Loading…
Printed Organic and Inorganic Electronics: Devices To Systems
Affordable and versatile printed electronics can play a critical role for large area applications, such as for displays, sensors, energy harvesting, and storage. Significant advances including commercialization in the general area of printed electronics have been based on organic molecular electroni...
Saved in:
Published in: | IEEE journal on emerging and selected topics in circuits and systems 2017-03, Vol.7 (1), p.147-160 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Affordable and versatile printed electronics can play a critical role for large area applications, such as for displays, sensors, energy harvesting, and storage. Significant advances including commercialization in the general area of printed electronics have been based on organic molecular electronics. Still some fundamental challenges remain: thermal instability, modest charge transport characteristics, and limited lithographic resolution. In the last decade, one-dimensional nanotubes and nanowires, like carbon nanotubes and silicon nanowires, followed by two-dimensional materials, like graphene and transitional dichalcogenide materials, have shown interesting promise as next-generation printed electronic materials. Challenges, such as non-uniformity in growth, limited scalability, and integration issues, need to be resolved for the viable application of these materials to technology. Recently, the concept of printed high-performance complementary metal-oxide semiconductor electronics has also emerged and been proven successful for application to electronics. Here, we review progress in CMOS technology and applications, including challenges faced and opportunities revealed. |
---|---|
ISSN: | 2156-3357 2156-3365 |
DOI: | 10.1109/JETCAS.2016.2619979 |