Loading…
Modeling for Fluid Transients in Liquid-Circular Angular Accelerometer
Liquid-circular angular accelerometer is generally designed with the circular tube, the fluid mass, and the porous transducer. With the consideration of the fluid compressibility, a novel theoretical model of the fluidic system of this sensor is developed based on the theory of fluid transients for...
Saved in:
Published in: | IEEE sensors journal 2017-01, Vol.17 (2), p.267-273 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Liquid-circular angular accelerometer is generally designed with the circular tube, the fluid mass, and the porous transducer. With the consideration of the fluid compressibility, a novel theoretical model of the fluidic system of this sensor is developed based on the theory of fluid transients for the first time. Simulation and experiments are conducted to prove the validity of the proposed model and the model manifests satisfactory performance to calculate the natural frequency, the resonances, the bandwidth, and the low-frequency gain of the fluidic system. Moreover, the influences of several structure parameters are analyzed by using the proposed model. The wave speed in the fluid mass affects the bandwidth of the fluidic system grossly, while the radius of the circular tube has effects on both the gain and the bandwidth. Besides, the liquid resistance of the transducer and the cross-sectional area of the circular tube are found to exert analogous influences on the frequency response of the fluidic system. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2016.2628039 |