Loading…
An Evolutionary Robotics Approach to the Control of Plant Growth and Motion: Modeling Plants and Crossing the Reality Gap
The self-organizing bio-hybrid collaboration ofrobots and natural plants allows for a variety of interestingapplications. As an example we investigate how robots can beused to control the growth and motion of a natural plant, using LEDs to provide stimuli. We follow an evolutionaryrobotics approach...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The self-organizing bio-hybrid collaboration ofrobots and natural plants allows for a variety of interestingapplications. As an example we investigate how robots can beused to control the growth and motion of a natural plant, using LEDs to provide stimuli. We follow an evolutionaryrobotics approach where task performance is determined bymonitoring the plant's reaction. First, we do initial plantexperiments with simple, predetermined controllers. Then weuse image sampling data as a model of the dynamics ofthe plant tip xy position. Second, we use this approach toevolve robot controllers in simulation. The task is to makethe plant approach three predetermined, distinct points in anxy-plane. Finally, we test the evolved controllers in real plantexperiments and find that we cross the reality gap successfully. We shortly describe how we have extended from plant tipto many points on the plant, for a model of the plant stemdynamics. Future work will extend to two-axes image samplingfor a 3-d approach. |
---|---|
ISSN: | 1949-3681 |
DOI: | 10.1109/SASO.2016.8 |