Loading…

Fully differential current-input CMOS amplifier front-end suppressing mixed signal substrate noise for optoelectronic applications

In recent optoelectronic communication systems, microprocessors tend to be imbedded on-chip with analog interface circuitry. This results in a critical substrate noise issues for mixed-signal chip designers because switching transients in digital MOS circuits can interfere with analog circuits integ...

Full description

Saved in:
Bibliographic Details
Main Authors: Chang, J.J., Myunghee Lee, Sungyong Jung, Brooke, M.A., Jokerst, N.M., Wills, D.S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 330 vol.1
container_issue
container_start_page 327
container_title
container_volume 1
creator Chang, J.J.
Myunghee Lee
Sungyong Jung
Brooke, M.A.
Jokerst, N.M.
Wills, D.S.
description In recent optoelectronic communication systems, microprocessors tend to be imbedded on-chip with analog interface circuitry. This results in a critical substrate noise issues for mixed-signal chip designers because switching transients in digital MOS circuits can interfere with analog circuits integrated on the same die by means of coupling through the substrate. In order to optimize the dynamic range of the system and to minimize the sensitivity to substrate noise, many noise-reduction techniques, such as a P+ guard ring, a N-well guard ring, trench oxide isolation, and MOSCAP have been developed and employed to suppress substrate noise generated by clocking of the digital circuitry in microprocessor. In this paper, a fully differential method is described, which is used to reduce the substrate noise effect caused by the microprocessor. This approach has been implemented in a communications data processing application, in which the microprocessor is located next to the analog current-input optical data receiver and quantization circuits which have a sensitivity of -28 dBm and variable gain characteristic for power efficiency. Both simulated and experimental results of this design approach are presented herein.
doi_str_mv 10.1109/ISCAS.1999.777869
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_777869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>777869</ieee_id><sourcerecordid>777869</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-725a65ffec7945cfb621bd8836131aabbb801d37cd8af2fdba512cf67ddea05f3</originalsourceid><addsrcrecordid>eNotUE1LAzEUDIig1P4APeUPbE12N5vNsSxWC5UequeSj5cS2WZDkgV79ZcbqY8HM8xjhuEh9EjJilIinreHYX1YUSHEinPed-IGLQXvSdmGtZyyO7RM6YuUaRkRtLtHP5t5HC_YOGshgs9OjljP8Y9Wzoc54-F9f8DyHEZnHURs41RO4A1OcwgRUnL-hM_uG4riTr7406xSjjID9pNLgO0U8RTyBCPoXOxOYxlKnpbZTT49oFsrxwTLf1ygz83Lx_BW7fav22G9qxwlba54zWTHSk3NRcu0VV1Nlen7pqMNlVIp1RNqGq5NL21tjZKM1tp23BiQhNlmgZ6uuQ4AjiG6s4yX4_VRzS8ksGPI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fully differential current-input CMOS amplifier front-end suppressing mixed signal substrate noise for optoelectronic applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chang, J.J. ; Myunghee Lee ; Sungyong Jung ; Brooke, M.A. ; Jokerst, N.M. ; Wills, D.S.</creator><creatorcontrib>Chang, J.J. ; Myunghee Lee ; Sungyong Jung ; Brooke, M.A. ; Jokerst, N.M. ; Wills, D.S.</creatorcontrib><description>In recent optoelectronic communication systems, microprocessors tend to be imbedded on-chip with analog interface circuitry. This results in a critical substrate noise issues for mixed-signal chip designers because switching transients in digital MOS circuits can interfere with analog circuits integrated on the same die by means of coupling through the substrate. In order to optimize the dynamic range of the system and to minimize the sensitivity to substrate noise, many noise-reduction techniques, such as a P+ guard ring, a N-well guard ring, trench oxide isolation, and MOSCAP have been developed and employed to suppress substrate noise generated by clocking of the digital circuitry in microprocessor. In this paper, a fully differential method is described, which is used to reduce the substrate noise effect caused by the microprocessor. This approach has been implemented in a communications data processing application, in which the microprocessor is located next to the analog current-input optical data receiver and quantization circuits which have a sensitivity of -28 dBm and variable gain characteristic for power efficiency. Both simulated and experimental results of this design approach are presented herein.</description><identifier>ISBN: 9780780354715</identifier><identifier>ISBN: 0780354710</identifier><identifier>DOI: 10.1109/ISCAS.1999.777869</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit noise ; Communication switching ; Differential amplifiers ; Microprocessors ; Noise generators ; Optical amplifiers ; Optical noise ; Optical receivers ; Switching circuits ; System-on-a-chip</subject><ispartof>1999 IEEE International Symposium on Circuits and Systems (ISCAS), 1999, Vol.1, p.327-330 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/777869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/777869$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang, J.J.</creatorcontrib><creatorcontrib>Myunghee Lee</creatorcontrib><creatorcontrib>Sungyong Jung</creatorcontrib><creatorcontrib>Brooke, M.A.</creatorcontrib><creatorcontrib>Jokerst, N.M.</creatorcontrib><creatorcontrib>Wills, D.S.</creatorcontrib><title>Fully differential current-input CMOS amplifier front-end suppressing mixed signal substrate noise for optoelectronic applications</title><title>1999 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>In recent optoelectronic communication systems, microprocessors tend to be imbedded on-chip with analog interface circuitry. This results in a critical substrate noise issues for mixed-signal chip designers because switching transients in digital MOS circuits can interfere with analog circuits integrated on the same die by means of coupling through the substrate. In order to optimize the dynamic range of the system and to minimize the sensitivity to substrate noise, many noise-reduction techniques, such as a P+ guard ring, a N-well guard ring, trench oxide isolation, and MOSCAP have been developed and employed to suppress substrate noise generated by clocking of the digital circuitry in microprocessor. In this paper, a fully differential method is described, which is used to reduce the substrate noise effect caused by the microprocessor. This approach has been implemented in a communications data processing application, in which the microprocessor is located next to the analog current-input optical data receiver and quantization circuits which have a sensitivity of -28 dBm and variable gain characteristic for power efficiency. Both simulated and experimental results of this design approach are presented herein.</description><subject>Circuit noise</subject><subject>Communication switching</subject><subject>Differential amplifiers</subject><subject>Microprocessors</subject><subject>Noise generators</subject><subject>Optical amplifiers</subject><subject>Optical noise</subject><subject>Optical receivers</subject><subject>Switching circuits</subject><subject>System-on-a-chip</subject><isbn>9780780354715</isbn><isbn>0780354710</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUE1LAzEUDIig1P4APeUPbE12N5vNsSxWC5UequeSj5cS2WZDkgV79ZcbqY8HM8xjhuEh9EjJilIinreHYX1YUSHEinPed-IGLQXvSdmGtZyyO7RM6YuUaRkRtLtHP5t5HC_YOGshgs9OjljP8Y9Wzoc54-F9f8DyHEZnHURs41RO4A1OcwgRUnL-hM_uG4riTr7406xSjjID9pNLgO0U8RTyBCPoXOxOYxlKnpbZTT49oFsrxwTLf1ygz83Lx_BW7fav22G9qxwlba54zWTHSk3NRcu0VV1Nlen7pqMNlVIp1RNqGq5NL21tjZKM1tp23BiQhNlmgZ6uuQ4AjiG6s4yX4_VRzS8ksGPI</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Chang, J.J.</creator><creator>Myunghee Lee</creator><creator>Sungyong Jung</creator><creator>Brooke, M.A.</creator><creator>Jokerst, N.M.</creator><creator>Wills, D.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Fully differential current-input CMOS amplifier front-end suppressing mixed signal substrate noise for optoelectronic applications</title><author>Chang, J.J. ; Myunghee Lee ; Sungyong Jung ; Brooke, M.A. ; Jokerst, N.M. ; Wills, D.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-725a65ffec7945cfb621bd8836131aabbb801d37cd8af2fdba512cf67ddea05f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Circuit noise</topic><topic>Communication switching</topic><topic>Differential amplifiers</topic><topic>Microprocessors</topic><topic>Noise generators</topic><topic>Optical amplifiers</topic><topic>Optical noise</topic><topic>Optical receivers</topic><topic>Switching circuits</topic><topic>System-on-a-chip</topic><toplevel>online_resources</toplevel><creatorcontrib>Chang, J.J.</creatorcontrib><creatorcontrib>Myunghee Lee</creatorcontrib><creatorcontrib>Sungyong Jung</creatorcontrib><creatorcontrib>Brooke, M.A.</creatorcontrib><creatorcontrib>Jokerst, N.M.</creatorcontrib><creatorcontrib>Wills, D.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, J.J.</au><au>Myunghee Lee</au><au>Sungyong Jung</au><au>Brooke, M.A.</au><au>Jokerst, N.M.</au><au>Wills, D.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fully differential current-input CMOS amplifier front-end suppressing mixed signal substrate noise for optoelectronic applications</atitle><btitle>1999 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>1999</date><risdate>1999</risdate><volume>1</volume><spage>327</spage><epage>330 vol.1</epage><pages>327-330 vol.1</pages><isbn>9780780354715</isbn><isbn>0780354710</isbn><abstract>In recent optoelectronic communication systems, microprocessors tend to be imbedded on-chip with analog interface circuitry. This results in a critical substrate noise issues for mixed-signal chip designers because switching transients in digital MOS circuits can interfere with analog circuits integrated on the same die by means of coupling through the substrate. In order to optimize the dynamic range of the system and to minimize the sensitivity to substrate noise, many noise-reduction techniques, such as a P+ guard ring, a N-well guard ring, trench oxide isolation, and MOSCAP have been developed and employed to suppress substrate noise generated by clocking of the digital circuitry in microprocessor. In this paper, a fully differential method is described, which is used to reduce the substrate noise effect caused by the microprocessor. This approach has been implemented in a communications data processing application, in which the microprocessor is located next to the analog current-input optical data receiver and quantization circuits which have a sensitivity of -28 dBm and variable gain characteristic for power efficiency. Both simulated and experimental results of this design approach are presented herein.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.1999.777869</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780354715
ispartof 1999 IEEE International Symposium on Circuits and Systems (ISCAS), 1999, Vol.1, p.327-330 vol.1
issn
language eng
recordid cdi_ieee_primary_777869
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Circuit noise
Communication switching
Differential amplifiers
Microprocessors
Noise generators
Optical amplifiers
Optical noise
Optical receivers
Switching circuits
System-on-a-chip
title Fully differential current-input CMOS amplifier front-end suppressing mixed signal substrate noise for optoelectronic applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fully%20differential%20current-input%20CMOS%20amplifier%20front-end%20suppressing%20mixed%20signal%20substrate%20noise%20for%20optoelectronic%20applications&rft.btitle=1999%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Chang,%20J.J.&rft.date=1999&rft.volume=1&rft.spage=327&rft.epage=330%20vol.1&rft.pages=327-330%20vol.1&rft.isbn=9780780354715&rft.isbn_list=0780354710&rft_id=info:doi/10.1109/ISCAS.1999.777869&rft_dat=%3Cieee_6IE%3E777869%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-725a65ffec7945cfb621bd8836131aabbb801d37cd8af2fdba512cf67ddea05f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=777869&rfr_iscdi=true