Loading…
Burrows-Wheeler Transform for Terabases
In order to avoid the reference bias introduced by mapping reads to a reference genome, bioinformaticians are investigating reference-free methods for analyzing sequenced genomes. With large projects sequencing thousands of individuals, this raises the need for tools capable of handling terabases of...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to avoid the reference bias introduced by mapping reads to a reference genome, bioinformaticians are investigating reference-free methods for analyzing sequenced genomes. With large projects sequencing thousands of individuals, this raises the need for tools capable of handling terabases of sequence data. A key method is the Burrows-Wheeler transform (BWT), which is widely used for compressing and indexing reads. We propose a practical algorithm for building the BWT of a large read collection by merging the BWTs of subcollections. With our 2.4 Tbp datasets, the algorithm can merge 600 Gbp/day on a single system, using 30 gigabytes of memory overhead on top of the run-length encoded BWTs. |
---|---|
ISSN: | 2375-0359 |
DOI: | 10.1109/DCC.2016.17 |