Loading…
Multi-perspective vehicle detection and tracking: Challenges, dataset, and metrics
The research community has shown significant improvements in both vision-based detection and tracking of vehicles, working towards a high level understanding of on-road maneuvers. Behaviors of surrounding vehicles in a highway environment is found as an interesting starting point, of why this datase...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 964 |
container_issue | |
container_start_page | 959 |
container_title | |
container_volume | |
creator | Dueholm, Jacob V. Kristoffersen, Miklas S. Satzoda, Ravi K. Ohn-Bar, Eshed Moeslund, Thomas B. Trivedi, Mohan M. |
description | The research community has shown significant improvements in both vision-based detection and tracking of vehicles, working towards a high level understanding of on-road maneuvers. Behaviors of surrounding vehicles in a highway environment is found as an interesting starting point, of why this dataset is introduced along with its challenges and evaluation metrics. A vision-based multi-perspective dataset is presented, containing a full panoramic view from a moving platform driving on U.S. highways capturing 2704×1440 resolution images at 12 frames per second. The dataset serves multiple purposes to be used as traditional detection and tracking, together with tracking of vehicles across perspectives. Each of the four perspectives have been annotated, resulting in more than 4000 bounding boxes in order to evaluate and compare novel methods. |
doi_str_mv | 10.1109/ITSC.2016.7795671 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7795671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7795671</ieee_id><sourcerecordid>7795671</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-de609d64c46ff48c4ea7bd3116ef97a20a1afe0e4f778bed0e098f63e2d262873</originalsourceid><addsrcrecordid>eNotkMtKAzEYhaMgWOo8gLjJA3TGP8lMLu5k8FKoCDr7kiZ_2uh0HCax4Nt769kc-Dh8i0PIJYOKMTDXy-61rTgwWSllGqnYCSmM0qwBA0xr05ySGWeNKAGYOidFSm_wE8G1FDAjL0-ffY7liFMa0eV4QHrAXXQ9Uo_5l3wM1A6e5sm69zhsb2i7s32PwxbTgnqbbcK8-JvsMU_RpQtyFmyfsDj2nHT3d137WK6eH5bt7aqMBnLpUYLxsna1DKHWrkarNl4wJjEYZTlYZgMC1kEpvUEPCEYHKZB7LrlWYk6u_rUREdfjFPd2-lofTxDf7iZRPw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-perspective vehicle detection and tracking: Challenges, dataset, and metrics</title><source>IEEE Xplore All Conference Series</source><creator>Dueholm, Jacob V. ; Kristoffersen, Miklas S. ; Satzoda, Ravi K. ; Ohn-Bar, Eshed ; Moeslund, Thomas B. ; Trivedi, Mohan M.</creator><creatorcontrib>Dueholm, Jacob V. ; Kristoffersen, Miklas S. ; Satzoda, Ravi K. ; Ohn-Bar, Eshed ; Moeslund, Thomas B. ; Trivedi, Mohan M.</creatorcontrib><description>The research community has shown significant improvements in both vision-based detection and tracking of vehicles, working towards a high level understanding of on-road maneuvers. Behaviors of surrounding vehicles in a highway environment is found as an interesting starting point, of why this dataset is introduced along with its challenges and evaluation metrics. A vision-based multi-perspective dataset is presented, containing a full panoramic view from a moving platform driving on U.S. highways capturing 2704×1440 resolution images at 12 frames per second. The dataset serves multiple purposes to be used as traditional detection and tracking, together with tracking of vehicles across perspectives. Each of the four perspectives have been annotated, resulting in more than 4000 bounding boxes in order to evaluate and compare novel methods.</description><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 9781509018895</identifier><identifier>EISBN: 1509018891</identifier><identifier>DOI: 10.1109/ITSC.2016.7795671</identifier><language>eng</language><publisher>IEEE</publisher><subject>autonomous driving ; Cameras ; Measurement ; multi-perspective behavior analysis ; Roads ; Three-dimensional displays ; Trajectory ; Vehicle detection ; vehicle tracking ; Vehicles</subject><ispartof>2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016, p.959-964</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7795671$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7795671$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dueholm, Jacob V.</creatorcontrib><creatorcontrib>Kristoffersen, Miklas S.</creatorcontrib><creatorcontrib>Satzoda, Ravi K.</creatorcontrib><creatorcontrib>Ohn-Bar, Eshed</creatorcontrib><creatorcontrib>Moeslund, Thomas B.</creatorcontrib><creatorcontrib>Trivedi, Mohan M.</creatorcontrib><title>Multi-perspective vehicle detection and tracking: Challenges, dataset, and metrics</title><title>2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC)</title><addtitle>ITSC</addtitle><description>The research community has shown significant improvements in both vision-based detection and tracking of vehicles, working towards a high level understanding of on-road maneuvers. Behaviors of surrounding vehicles in a highway environment is found as an interesting starting point, of why this dataset is introduced along with its challenges and evaluation metrics. A vision-based multi-perspective dataset is presented, containing a full panoramic view from a moving platform driving on U.S. highways capturing 2704×1440 resolution images at 12 frames per second. The dataset serves multiple purposes to be used as traditional detection and tracking, together with tracking of vehicles across perspectives. Each of the four perspectives have been annotated, resulting in more than 4000 bounding boxes in order to evaluate and compare novel methods.</description><subject>autonomous driving</subject><subject>Cameras</subject><subject>Measurement</subject><subject>multi-perspective behavior analysis</subject><subject>Roads</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><subject>Vehicle detection</subject><subject>vehicle tracking</subject><subject>Vehicles</subject><issn>2153-0017</issn><isbn>9781509018895</isbn><isbn>1509018891</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKAzEYhaMgWOo8gLjJA3TGP8lMLu5k8FKoCDr7kiZ_2uh0HCax4Nt769kc-Dh8i0PIJYOKMTDXy-61rTgwWSllGqnYCSmM0qwBA0xr05ySGWeNKAGYOidFSm_wE8G1FDAjL0-ffY7liFMa0eV4QHrAXXQ9Uo_5l3wM1A6e5sm69zhsb2i7s32PwxbTgnqbbcK8-JvsMU_RpQtyFmyfsDj2nHT3d137WK6eH5bt7aqMBnLpUYLxsna1DKHWrkarNl4wJjEYZTlYZgMC1kEpvUEPCEYHKZB7LrlWYk6u_rUREdfjFPd2-lofTxDf7iZRPw</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Dueholm, Jacob V.</creator><creator>Kristoffersen, Miklas S.</creator><creator>Satzoda, Ravi K.</creator><creator>Ohn-Bar, Eshed</creator><creator>Moeslund, Thomas B.</creator><creator>Trivedi, Mohan M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201611</creationdate><title>Multi-perspective vehicle detection and tracking: Challenges, dataset, and metrics</title><author>Dueholm, Jacob V. ; Kristoffersen, Miklas S. ; Satzoda, Ravi K. ; Ohn-Bar, Eshed ; Moeslund, Thomas B. ; Trivedi, Mohan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-de609d64c46ff48c4ea7bd3116ef97a20a1afe0e4f778bed0e098f63e2d262873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>autonomous driving</topic><topic>Cameras</topic><topic>Measurement</topic><topic>multi-perspective behavior analysis</topic><topic>Roads</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><topic>Vehicle detection</topic><topic>vehicle tracking</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Dueholm, Jacob V.</creatorcontrib><creatorcontrib>Kristoffersen, Miklas S.</creatorcontrib><creatorcontrib>Satzoda, Ravi K.</creatorcontrib><creatorcontrib>Ohn-Bar, Eshed</creatorcontrib><creatorcontrib>Moeslund, Thomas B.</creatorcontrib><creatorcontrib>Trivedi, Mohan M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dueholm, Jacob V.</au><au>Kristoffersen, Miklas S.</au><au>Satzoda, Ravi K.</au><au>Ohn-Bar, Eshed</au><au>Moeslund, Thomas B.</au><au>Trivedi, Mohan M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-perspective vehicle detection and tracking: Challenges, dataset, and metrics</atitle><btitle>2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC)</btitle><stitle>ITSC</stitle><date>2016-11</date><risdate>2016</risdate><spage>959</spage><epage>964</epage><pages>959-964</pages><eissn>2153-0017</eissn><eisbn>9781509018895</eisbn><eisbn>1509018891</eisbn><abstract>The research community has shown significant improvements in both vision-based detection and tracking of vehicles, working towards a high level understanding of on-road maneuvers. Behaviors of surrounding vehicles in a highway environment is found as an interesting starting point, of why this dataset is introduced along with its challenges and evaluation metrics. A vision-based multi-perspective dataset is presented, containing a full panoramic view from a moving platform driving on U.S. highways capturing 2704×1440 resolution images at 12 frames per second. The dataset serves multiple purposes to be used as traditional detection and tracking, together with tracking of vehicles across perspectives. Each of the four perspectives have been annotated, resulting in more than 4000 bounding boxes in order to evaluate and compare novel methods.</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2016.7795671</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-0017 |
ispartof | 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016, p.959-964 |
issn | 2153-0017 |
language | eng |
recordid | cdi_ieee_primary_7795671 |
source | IEEE Xplore All Conference Series |
subjects | autonomous driving Cameras Measurement multi-perspective behavior analysis Roads Three-dimensional displays Trajectory Vehicle detection vehicle tracking Vehicles |
title | Multi-perspective vehicle detection and tracking: Challenges, dataset, and metrics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-perspective%20vehicle%20detection%20and%20tracking:%20Challenges,%20dataset,%20and%20metrics&rft.btitle=2016%20IEEE%2019th%20International%20Conference%20on%20Intelligent%20Transportation%20Systems%20(ITSC)&rft.au=Dueholm,%20Jacob%20V.&rft.date=2016-11&rft.spage=959&rft.epage=964&rft.pages=959-964&rft.eissn=2153-0017&rft_id=info:doi/10.1109/ITSC.2016.7795671&rft.eisbn=9781509018895&rft.eisbn_list=1509018891&rft_dat=%3Cieee_CHZPO%3E7795671%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-de609d64c46ff48c4ea7bd3116ef97a20a1afe0e4f778bed0e098f63e2d262873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7795671&rfr_iscdi=true |