Loading…
A Genetically Programmable Hybrid Virtual Reconfigurable Architecture for Image Filtering Applications
A new and efficient automatic hybrid method, called Hy-EH, based on Virtual Reconfigurable Architectures (VRAs) and implemented in Field Programmable Gate Arrays (FPGAs) is proposed, for a hardware-embedded construction of image filters. The method also encompass an evolutionary software system, whi...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new and efficient automatic hybrid method, called Hy-EH, based on Virtual Reconfigurable Architectures (VRAs) and implemented in Field Programmable Gate Arrays (FPGAs) is proposed, for a hardware-embedded construction of image filters. The method also encompass an evolutionary software system, which represents the chromosome as a bi-dimensional grid of function elements (FEs), entirely parameterized using the Verilog-HDL (Verilog Hardware Description Language), which is reconfigured using the MATLAB toolbox GPLAB, before its download into the FPGA. In the so-called intrinsic proposals, evolutionary processes take place internally to the hardware, in a pre-defined fixed way, in extrinsic proposals evolutionary processes happen externally to the hardware. The hybrid Hy-EH method, described in this paper allows for the intrinsic creation of a flexible-sized hardware, in an extrinsic way i.e., by means of an evolutionary process that happens externally to the hardware. Hy-EH is also a convenient choice as far as extrinsic methods are considered, since it does not depend on a proprietary solution for its implementation. A comparative analysis of using the Hy-EH versus an existing intrinsic proposal, in two well-known problems, has been conducted. Results show that by using Hy-EH there was little hardware complexity due to the optimized and more flexible use of shorter chromosomes. |
---|---|
ISSN: | 2377-5416 |
DOI: | 10.1109/SIBGRAPI.2016.029 |