Loading…

Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories

Bluetooth sensors have recently been developed throughout the world for traffic information gathering. Primarily designed for travel time analysis, this article presents a method for vehicular trajectories retrieval. After a short description of some of the challenges at hand in using Bluetooth data...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2017-09, Vol.18 (9), p.2377-2386
Main Authors: Michau, Gabriel, Nantes, Alfredo, Bhaskar, Ashish, Chung, Edward, Abry, Patrice, Borgnat, Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23
cites cdi_FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23
container_end_page 2386
container_issue 9
container_start_page 2377
container_title IEEE transactions on intelligent transportation systems
container_volume 18
creator Michau, Gabriel
Nantes, Alfredo
Bhaskar, Ashish
Chung, Edward
Abry, Patrice
Borgnat, Pierre
description Bluetooth sensors have recently been developed throughout the world for traffic information gathering. Primarily designed for travel time analysis, this article presents a method for vehicular trajectories retrieval. After a short description of some of the challenges at hand in using Bluetooth data in an urban network, a procedure to extract trip information from such data is proposed. It is further analyzed and illustrated at work on a real dataset collected in Brisbane. Last, this article shows that using spatially constrained shortest path analysis, this trip information, once extracted, can be used for the reconstruction of the trajectories. The performance of the process is assessed using both a simulated dataset and one from the real-world acquired in Brisbane, showing encouraging results, with up to 84% of accurately recovered trajectories.
doi_str_mv 10.1109/TITS.2016.2642304
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7819544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7819544</ieee_id><sourcerecordid>10_1109_TITS_2016_2642304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23</originalsourceid><addsrcrecordid>eNo9kN1KxDAQRoMouK4-gHiTF2jN5KfbeKd11YUFQbveljSduFlqK2kUfXtbdvFmZjjMNwOHkEtgKQDT1-WqfE05gyzlmeSCySMyA6XyhI3seJq5TDRT7JScDcNupFIBzEhx135h7Pu4pfcmGuo7ajq6CfVYi76L-BNv6AvG4PHbd-_0DbfetkjLYHZoYz_y4ZycONMOeHHoc7J5WJbFU7J-flwVt-vECgEx4U0uOKDTzDHrrKpBcw0ZirqGXIFsbKMW0gkLKgOtpLFgOJecGXDW1lzMCezv2tAPQ0BXfQb_YcJvBayaLFSThWqyUB0sjJmrfcYj4v_-Ip8eSPEHJEBYbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories</title><source>IEEE Xplore (Online service)</source><creator>Michau, Gabriel ; Nantes, Alfredo ; Bhaskar, Ashish ; Chung, Edward ; Abry, Patrice ; Borgnat, Pierre</creator><creatorcontrib>Michau, Gabriel ; Nantes, Alfredo ; Bhaskar, Ashish ; Chung, Edward ; Abry, Patrice ; Borgnat, Pierre</creatorcontrib><description>Bluetooth sensors have recently been developed throughout the world for traffic information gathering. Primarily designed for travel time analysis, this article presents a method for vehicular trajectories retrieval. After a short description of some of the challenges at hand in using Bluetooth data in an urban network, a procedure to extract trip information from such data is proposed. It is further analyzed and illustrated at work on a real dataset collected in Brisbane. Last, this article shows that using spatially constrained shortest path analysis, this trip information, once extracted, can be used for the reconstruction of the trajectories. The performance of the process is assessed using both a simulated dataset and one from the real-world acquired in Brisbane, showing encouraging results, with up to 84% of accurately recovered trajectories.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2016.2642304</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bluetooth ; constrained shortest path ; Context ; Detectors ; Roads ; trajectories ; Trajectory ; trip sequencing ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2017-09, Vol.18 (9), p.2377-2386</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23</citedby><cites>FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23</cites><orcidid>0000-0001-6882-2906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7819544$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Michau, Gabriel</creatorcontrib><creatorcontrib>Nantes, Alfredo</creatorcontrib><creatorcontrib>Bhaskar, Ashish</creatorcontrib><creatorcontrib>Chung, Edward</creatorcontrib><creatorcontrib>Abry, Patrice</creatorcontrib><creatorcontrib>Borgnat, Pierre</creatorcontrib><title>Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Bluetooth sensors have recently been developed throughout the world for traffic information gathering. Primarily designed for travel time analysis, this article presents a method for vehicular trajectories retrieval. After a short description of some of the challenges at hand in using Bluetooth data in an urban network, a procedure to extract trip information from such data is proposed. It is further analyzed and illustrated at work on a real dataset collected in Brisbane. Last, this article shows that using spatially constrained shortest path analysis, this trip information, once extracted, can be used for the reconstruction of the trajectories. The performance of the process is assessed using both a simulated dataset and one from the real-world acquired in Brisbane, showing encouraging results, with up to 84% of accurately recovered trajectories.</description><subject>Bluetooth</subject><subject>constrained shortest path</subject><subject>Context</subject><subject>Detectors</subject><subject>Roads</subject><subject>trajectories</subject><subject>Trajectory</subject><subject>trip sequencing</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kN1KxDAQRoMouK4-gHiTF2jN5KfbeKd11YUFQbveljSduFlqK2kUfXtbdvFmZjjMNwOHkEtgKQDT1-WqfE05gyzlmeSCySMyA6XyhI3seJq5TDRT7JScDcNupFIBzEhx135h7Pu4pfcmGuo7ajq6CfVYi76L-BNv6AvG4PHbd-_0DbfetkjLYHZoYz_y4ZycONMOeHHoc7J5WJbFU7J-flwVt-vECgEx4U0uOKDTzDHrrKpBcw0ZirqGXIFsbKMW0gkLKgOtpLFgOJecGXDW1lzMCezv2tAPQ0BXfQb_YcJvBayaLFSThWqyUB0sjJmrfcYj4v_-Ip8eSPEHJEBYbw</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Michau, Gabriel</creator><creator>Nantes, Alfredo</creator><creator>Bhaskar, Ashish</creator><creator>Chung, Edward</creator><creator>Abry, Patrice</creator><creator>Borgnat, Pierre</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6882-2906</orcidid></search><sort><creationdate>201709</creationdate><title>Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories</title><author>Michau, Gabriel ; Nantes, Alfredo ; Bhaskar, Ashish ; Chung, Edward ; Abry, Patrice ; Borgnat, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bluetooth</topic><topic>constrained shortest path</topic><topic>Context</topic><topic>Detectors</topic><topic>Roads</topic><topic>trajectories</topic><topic>Trajectory</topic><topic>trip sequencing</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michau, Gabriel</creatorcontrib><creatorcontrib>Nantes, Alfredo</creatorcontrib><creatorcontrib>Bhaskar, Ashish</creatorcontrib><creatorcontrib>Chung, Edward</creatorcontrib><creatorcontrib>Abry, Patrice</creatorcontrib><creatorcontrib>Borgnat, Pierre</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michau, Gabriel</au><au>Nantes, Alfredo</au><au>Bhaskar, Ashish</au><au>Chung, Edward</au><au>Abry, Patrice</au><au>Borgnat, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2017-09</date><risdate>2017</risdate><volume>18</volume><issue>9</issue><spage>2377</spage><epage>2386</epage><pages>2377-2386</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Bluetooth sensors have recently been developed throughout the world for traffic information gathering. Primarily designed for travel time analysis, this article presents a method for vehicular trajectories retrieval. After a short description of some of the challenges at hand in using Bluetooth data in an urban network, a procedure to extract trip information from such data is proposed. It is further analyzed and illustrated at work on a real dataset collected in Brisbane. Last, this article shows that using spatially constrained shortest path analysis, this trip information, once extracted, can be used for the reconstruction of the trajectories. The performance of the process is assessed using both a simulated dataset and one from the real-world acquired in Brisbane, showing encouraging results, with up to 84% of accurately recovered trajectories.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2016.2642304</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6882-2906</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2017-09, Vol.18 (9), p.2377-2386
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_7819544
source IEEE Xplore (Online service)
subjects Bluetooth
constrained shortest path
Context
Detectors
Roads
trajectories
Trajectory
trip sequencing
Vehicles
title Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bluetooth%20Data%20in%20an%20Urban%20Context:%20Retrieving%20Vehicle%20Trajectories&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Michau,%20Gabriel&rft.date=2017-09&rft.volume=18&rft.issue=9&rft.spage=2377&rft.epage=2386&rft.pages=2377-2386&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2016.2642304&rft_dat=%3Ccrossref_ieee_%3E10_1109_TITS_2016_2642304%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7819544&rfr_iscdi=true