Loading…
Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories
Bluetooth sensors have recently been developed throughout the world for traffic information gathering. Primarily designed for travel time analysis, this article presents a method for vehicular trajectories retrieval. After a short description of some of the challenges at hand in using Bluetooth data...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2017-09, Vol.18 (9), p.2377-2386 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23 |
container_end_page | 2386 |
container_issue | 9 |
container_start_page | 2377 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 18 |
creator | Michau, Gabriel Nantes, Alfredo Bhaskar, Ashish Chung, Edward Abry, Patrice Borgnat, Pierre |
description | Bluetooth sensors have recently been developed throughout the world for traffic information gathering. Primarily designed for travel time analysis, this article presents a method for vehicular trajectories retrieval. After a short description of some of the challenges at hand in using Bluetooth data in an urban network, a procedure to extract trip information from such data is proposed. It is further analyzed and illustrated at work on a real dataset collected in Brisbane. Last, this article shows that using spatially constrained shortest path analysis, this trip information, once extracted, can be used for the reconstruction of the trajectories. The performance of the process is assessed using both a simulated dataset and one from the real-world acquired in Brisbane, showing encouraging results, with up to 84% of accurately recovered trajectories. |
doi_str_mv | 10.1109/TITS.2016.2642304 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7819544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7819544</ieee_id><sourcerecordid>10_1109_TITS_2016_2642304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23</originalsourceid><addsrcrecordid>eNo9kN1KxDAQRoMouK4-gHiTF2jN5KfbeKd11YUFQbveljSduFlqK2kUfXtbdvFmZjjMNwOHkEtgKQDT1-WqfE05gyzlmeSCySMyA6XyhI3seJq5TDRT7JScDcNupFIBzEhx135h7Pu4pfcmGuo7ajq6CfVYi76L-BNv6AvG4PHbd-_0DbfetkjLYHZoYz_y4ZycONMOeHHoc7J5WJbFU7J-flwVt-vECgEx4U0uOKDTzDHrrKpBcw0ZirqGXIFsbKMW0gkLKgOtpLFgOJecGXDW1lzMCezv2tAPQ0BXfQb_YcJvBayaLFSThWqyUB0sjJmrfcYj4v_-Ip8eSPEHJEBYbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories</title><source>IEEE Xplore (Online service)</source><creator>Michau, Gabriel ; Nantes, Alfredo ; Bhaskar, Ashish ; Chung, Edward ; Abry, Patrice ; Borgnat, Pierre</creator><creatorcontrib>Michau, Gabriel ; Nantes, Alfredo ; Bhaskar, Ashish ; Chung, Edward ; Abry, Patrice ; Borgnat, Pierre</creatorcontrib><description>Bluetooth sensors have recently been developed throughout the world for traffic information gathering. Primarily designed for travel time analysis, this article presents a method for vehicular trajectories retrieval. After a short description of some of the challenges at hand in using Bluetooth data in an urban network, a procedure to extract trip information from such data is proposed. It is further analyzed and illustrated at work on a real dataset collected in Brisbane. Last, this article shows that using spatially constrained shortest path analysis, this trip information, once extracted, can be used for the reconstruction of the trajectories. The performance of the process is assessed using both a simulated dataset and one from the real-world acquired in Brisbane, showing encouraging results, with up to 84% of accurately recovered trajectories.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2016.2642304</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bluetooth ; constrained shortest path ; Context ; Detectors ; Roads ; trajectories ; Trajectory ; trip sequencing ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2017-09, Vol.18 (9), p.2377-2386</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23</citedby><cites>FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23</cites><orcidid>0000-0001-6882-2906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7819544$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Michau, Gabriel</creatorcontrib><creatorcontrib>Nantes, Alfredo</creatorcontrib><creatorcontrib>Bhaskar, Ashish</creatorcontrib><creatorcontrib>Chung, Edward</creatorcontrib><creatorcontrib>Abry, Patrice</creatorcontrib><creatorcontrib>Borgnat, Pierre</creatorcontrib><title>Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Bluetooth sensors have recently been developed throughout the world for traffic information gathering. Primarily designed for travel time analysis, this article presents a method for vehicular trajectories retrieval. After a short description of some of the challenges at hand in using Bluetooth data in an urban network, a procedure to extract trip information from such data is proposed. It is further analyzed and illustrated at work on a real dataset collected in Brisbane. Last, this article shows that using spatially constrained shortest path analysis, this trip information, once extracted, can be used for the reconstruction of the trajectories. The performance of the process is assessed using both a simulated dataset and one from the real-world acquired in Brisbane, showing encouraging results, with up to 84% of accurately recovered trajectories.</description><subject>Bluetooth</subject><subject>constrained shortest path</subject><subject>Context</subject><subject>Detectors</subject><subject>Roads</subject><subject>trajectories</subject><subject>Trajectory</subject><subject>trip sequencing</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kN1KxDAQRoMouK4-gHiTF2jN5KfbeKd11YUFQbveljSduFlqK2kUfXtbdvFmZjjMNwOHkEtgKQDT1-WqfE05gyzlmeSCySMyA6XyhI3seJq5TDRT7JScDcNupFIBzEhx135h7Pu4pfcmGuo7ajq6CfVYi76L-BNv6AvG4PHbd-_0DbfetkjLYHZoYz_y4ZycONMOeHHoc7J5WJbFU7J-flwVt-vECgEx4U0uOKDTzDHrrKpBcw0ZirqGXIFsbKMW0gkLKgOtpLFgOJecGXDW1lzMCezv2tAPQ0BXfQb_YcJvBayaLFSThWqyUB0sjJmrfcYj4v_-Ip8eSPEHJEBYbw</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Michau, Gabriel</creator><creator>Nantes, Alfredo</creator><creator>Bhaskar, Ashish</creator><creator>Chung, Edward</creator><creator>Abry, Patrice</creator><creator>Borgnat, Pierre</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6882-2906</orcidid></search><sort><creationdate>201709</creationdate><title>Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories</title><author>Michau, Gabriel ; Nantes, Alfredo ; Bhaskar, Ashish ; Chung, Edward ; Abry, Patrice ; Borgnat, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bluetooth</topic><topic>constrained shortest path</topic><topic>Context</topic><topic>Detectors</topic><topic>Roads</topic><topic>trajectories</topic><topic>Trajectory</topic><topic>trip sequencing</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michau, Gabriel</creatorcontrib><creatorcontrib>Nantes, Alfredo</creatorcontrib><creatorcontrib>Bhaskar, Ashish</creatorcontrib><creatorcontrib>Chung, Edward</creatorcontrib><creatorcontrib>Abry, Patrice</creatorcontrib><creatorcontrib>Borgnat, Pierre</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michau, Gabriel</au><au>Nantes, Alfredo</au><au>Bhaskar, Ashish</au><au>Chung, Edward</au><au>Abry, Patrice</au><au>Borgnat, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2017-09</date><risdate>2017</risdate><volume>18</volume><issue>9</issue><spage>2377</spage><epage>2386</epage><pages>2377-2386</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Bluetooth sensors have recently been developed throughout the world for traffic information gathering. Primarily designed for travel time analysis, this article presents a method for vehicular trajectories retrieval. After a short description of some of the challenges at hand in using Bluetooth data in an urban network, a procedure to extract trip information from such data is proposed. It is further analyzed and illustrated at work on a real dataset collected in Brisbane. Last, this article shows that using spatially constrained shortest path analysis, this trip information, once extracted, can be used for the reconstruction of the trajectories. The performance of the process is assessed using both a simulated dataset and one from the real-world acquired in Brisbane, showing encouraging results, with up to 84% of accurately recovered trajectories.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2016.2642304</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6882-2906</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2017-09, Vol.18 (9), p.2377-2386 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_7819544 |
source | IEEE Xplore (Online service) |
subjects | Bluetooth constrained shortest path Context Detectors Roads trajectories Trajectory trip sequencing Vehicles |
title | Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bluetooth%20Data%20in%20an%20Urban%20Context:%20Retrieving%20Vehicle%20Trajectories&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Michau,%20Gabriel&rft.date=2017-09&rft.volume=18&rft.issue=9&rft.spage=2377&rft.epage=2386&rft.pages=2377-2386&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2016.2642304&rft_dat=%3Ccrossref_ieee_%3E10_1109_TITS_2016_2642304%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-2d8321ef90f0cfc5b192916e3bb18514dcd574f3c1561954ac1a22420a1fccb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7819544&rfr_iscdi=true |