Loading…
A 4-fJ/b Delay-Hardened Physically Unclonable Function Circuit With Selective Bit Destabilization in 14-nm Trigate CMOS
This paper describes a full-entropy 128-b key generation platform based on a 1024-b hybrid physically unclonable function (PUF) array, fabricated in 14-nm trigate high-k/metal-gate CMOS. Delay-hardened hybrid PUF cells use differential clock delay insertion to favor circuit evaluation in the desired...
Saved in:
Published in: | IEEE journal of solid-state circuits 2017-04, Vol.52 (4), p.940-949 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-f52b60936d83a12a3a98a5a87e8b3399890d961bce0918c4ffa9f0e6c5988d283 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-f52b60936d83a12a3a98a5a87e8b3399890d961bce0918c4ffa9f0e6c5988d283 |
container_end_page | 949 |
container_issue | 4 |
container_start_page | 940 |
container_title | IEEE journal of solid-state circuits |
container_volume | 52 |
creator | Satpathy, Sudhir Mathew, Sanu K. Suresh, Vikram Anders, Mark A. Kaul, Himanshu Agarwal, Amit Hsu, Steven K. Chen, Gregory Krishnamurthy, Ram K. De, Vivek K. |
description | This paper describes a full-entropy 128-b key generation platform based on a 1024-b hybrid physically unclonable function (PUF) array, fabricated in 14-nm trigate high-k/metal-gate CMOS. Delay-hardened hybrid PUF cells use differential clock delay insertion to favor circuit evaluation in the desired direction while leveraging burn-in-induced aging for selective bit destabilization enabling quick identification and masking of unstable cells, and subsequent temporal-majority-voting with soft dark-bit masking to reduce PUF bit error by 3.9 times to 1.45% resulting in ~5 ppb failure probability. A stable full-entropy 128-b key is finally generated from the 1024 raw PUF bits using BCH error correction and AES-CBC-based entropy extraction. An all-digital design with compact PUF cell layout occupying 1.84 μm 2 achieves: 1) 4-fJ/b energy-efficiency with 3-μW leakage at 0.65 V, 70°C; 2) peak operating frequency of 1 GHz resulting in 1.2-μs key generation latency; 3) robust operation with stable key generation across 0.55-0.75 V, and 25°C-110°C; 4) 14 times separation between intra/inter-PUF hamming distances with 0.99993 entropy ensuring cryptographic quality randomness and uniqueness; 5) 48% higher PUF stability with long-term aging by leveraging transistor degradation to reinforce favorable cell bias; and 6) resiliency to power cycling attacks with common centroid clock routing measured from 49.5% hamming distance between array's evaluation and wake-up states. |
doi_str_mv | 10.1109/JSSC.2016.2636859 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7829394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7829394</ieee_id><sourcerecordid>1883355497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f52b60936d83a12a3a98a5a87e8b3399890d961bce0918c4ffa9f0e6c5988d283</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AONLE58L7bqN9hGHiASDySD61nTdnZSMDbtNM3-9Q4hPN_fkO_eeHIRuGR0wRuVwHsfRwKMsHHghD0Ugz1CPBYEgbMTfz1GPUiaI9Ci9RFdVte1W3xesh77H2CfZfJjgCeS6JTPtUiggxa-btrJG53mL14XJy0InOeBpU5jalgWOrDONrfGbrTc4hhw6-QvwQydNoKp1YnP7o_9QW2Dmk2KHV85-6Bpw9LKMr9FFpvMKbk6zj9bTx1U0I4vl03M0XhDjSV6TLPCSkEoepoJr5mmupdCBFiMQCedSCklTGbLEAJVMGD_LtMwohCaQQqSe4H10f7y7d-Vn0yVT27JxRfdSMSE4DwJfjjqKHSnjyqpykKm9szvtWsWoOvSrDv2qQ7_q1G_nuTt6LAD88yPR5ZY-_wXZXXWn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883355497</pqid></control><display><type>article</type><title>A 4-fJ/b Delay-Hardened Physically Unclonable Function Circuit With Selective Bit Destabilization in 14-nm Trigate CMOS</title><source>IEEE Xplore (Online service)</source><creator>Satpathy, Sudhir ; Mathew, Sanu K. ; Suresh, Vikram ; Anders, Mark A. ; Kaul, Himanshu ; Agarwal, Amit ; Hsu, Steven K. ; Chen, Gregory ; Krishnamurthy, Ram K. ; De, Vivek K.</creator><creatorcontrib>Satpathy, Sudhir ; Mathew, Sanu K. ; Suresh, Vikram ; Anders, Mark A. ; Kaul, Himanshu ; Agarwal, Amit ; Hsu, Steven K. ; Chen, Gregory ; Krishnamurthy, Ram K. ; De, Vivek K.</creatorcontrib><description>This paper describes a full-entropy 128-b key generation platform based on a 1024-b hybrid physically unclonable function (PUF) array, fabricated in 14-nm trigate high-k/metal-gate CMOS. Delay-hardened hybrid PUF cells use differential clock delay insertion to favor circuit evaluation in the desired direction while leveraging burn-in-induced aging for selective bit destabilization enabling quick identification and masking of unstable cells, and subsequent temporal-majority-voting with soft dark-bit masking to reduce PUF bit error by 3.9 times to 1.45% resulting in ~5 ppb failure probability. A stable full-entropy 128-b key is finally generated from the 1024 raw PUF bits using BCH error correction and AES-CBC-based entropy extraction. An all-digital design with compact PUF cell layout occupying 1.84 μm 2 achieves: 1) 4-fJ/b energy-efficiency with 3-μW leakage at 0.65 V, 70°C; 2) peak operating frequency of 1 GHz resulting in 1.2-μs key generation latency; 3) robust operation with stable key generation across 0.55-0.75 V, and 25°C-110°C; 4) 14 times separation between intra/inter-PUF hamming distances with 0.99993 entropy ensuring cryptographic quality randomness and uniqueness; 5) 48% higher PUF stability with long-term aging by leveraging transistor degradation to reinforce favorable cell bias; and 6) resiliency to power cycling attacks with common centroid clock routing measured from 49.5% hamming distance between array's evaluation and wake-up states.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2016.2636859</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aging ; Aging (artificial) ; Bit error ; Burn-in ; Circuit stability ; Clocks ; CMOS ; Cryptography ; Delay ; delay hardening ; Delays ; Destabilization ; Entropy ; entropy extraction ; Error correction ; key generation ; Masking ; physically unclonable function (PUF) ; Public Key Infrastructure ; Security ; selective bit destabilization ; soft dark-bit (DB) masking ; Transistors ; Uniqueness</subject><ispartof>IEEE journal of solid-state circuits, 2017-04, Vol.52 (4), p.940-949</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f52b60936d83a12a3a98a5a87e8b3399890d961bce0918c4ffa9f0e6c5988d283</citedby><cites>FETCH-LOGICAL-c293t-f52b60936d83a12a3a98a5a87e8b3399890d961bce0918c4ffa9f0e6c5988d283</cites><orcidid>0000-0003-3511-3526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7829394$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Satpathy, Sudhir</creatorcontrib><creatorcontrib>Mathew, Sanu K.</creatorcontrib><creatorcontrib>Suresh, Vikram</creatorcontrib><creatorcontrib>Anders, Mark A.</creatorcontrib><creatorcontrib>Kaul, Himanshu</creatorcontrib><creatorcontrib>Agarwal, Amit</creatorcontrib><creatorcontrib>Hsu, Steven K.</creatorcontrib><creatorcontrib>Chen, Gregory</creatorcontrib><creatorcontrib>Krishnamurthy, Ram K.</creatorcontrib><creatorcontrib>De, Vivek K.</creatorcontrib><title>A 4-fJ/b Delay-Hardened Physically Unclonable Function Circuit With Selective Bit Destabilization in 14-nm Trigate CMOS</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This paper describes a full-entropy 128-b key generation platform based on a 1024-b hybrid physically unclonable function (PUF) array, fabricated in 14-nm trigate high-k/metal-gate CMOS. Delay-hardened hybrid PUF cells use differential clock delay insertion to favor circuit evaluation in the desired direction while leveraging burn-in-induced aging for selective bit destabilization enabling quick identification and masking of unstable cells, and subsequent temporal-majority-voting with soft dark-bit masking to reduce PUF bit error by 3.9 times to 1.45% resulting in ~5 ppb failure probability. A stable full-entropy 128-b key is finally generated from the 1024 raw PUF bits using BCH error correction and AES-CBC-based entropy extraction. An all-digital design with compact PUF cell layout occupying 1.84 μm 2 achieves: 1) 4-fJ/b energy-efficiency with 3-μW leakage at 0.65 V, 70°C; 2) peak operating frequency of 1 GHz resulting in 1.2-μs key generation latency; 3) robust operation with stable key generation across 0.55-0.75 V, and 25°C-110°C; 4) 14 times separation between intra/inter-PUF hamming distances with 0.99993 entropy ensuring cryptographic quality randomness and uniqueness; 5) 48% higher PUF stability with long-term aging by leveraging transistor degradation to reinforce favorable cell bias; and 6) resiliency to power cycling attacks with common centroid clock routing measured from 49.5% hamming distance between array's evaluation and wake-up states.</description><subject>Aging</subject><subject>Aging (artificial)</subject><subject>Bit error</subject><subject>Burn-in</subject><subject>Circuit stability</subject><subject>Clocks</subject><subject>CMOS</subject><subject>Cryptography</subject><subject>Delay</subject><subject>delay hardening</subject><subject>Delays</subject><subject>Destabilization</subject><subject>Entropy</subject><subject>entropy extraction</subject><subject>Error correction</subject><subject>key generation</subject><subject>Masking</subject><subject>physically unclonable function (PUF)</subject><subject>Public Key Infrastructure</subject><subject>Security</subject><subject>selective bit destabilization</subject><subject>soft dark-bit (DB) masking</subject><subject>Transistors</subject><subject>Uniqueness</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kFFPwjAUhRujiYj-AONLE58L7bqN9hGHiASDySD61nTdnZSMDbtNM3-9Q4hPN_fkO_eeHIRuGR0wRuVwHsfRwKMsHHghD0Ugz1CPBYEgbMTfz1GPUiaI9Ci9RFdVte1W3xesh77H2CfZfJjgCeS6JTPtUiggxa-btrJG53mL14XJy0InOeBpU5jalgWOrDONrfGbrTc4hhw6-QvwQydNoKp1YnP7o_9QW2Dmk2KHV85-6Bpw9LKMr9FFpvMKbk6zj9bTx1U0I4vl03M0XhDjSV6TLPCSkEoepoJr5mmupdCBFiMQCedSCklTGbLEAJVMGD_LtMwohCaQQqSe4H10f7y7d-Vn0yVT27JxRfdSMSE4DwJfjjqKHSnjyqpykKm9szvtWsWoOvSrDv2qQ7_q1G_nuTt6LAD88yPR5ZY-_wXZXXWn</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Satpathy, Sudhir</creator><creator>Mathew, Sanu K.</creator><creator>Suresh, Vikram</creator><creator>Anders, Mark A.</creator><creator>Kaul, Himanshu</creator><creator>Agarwal, Amit</creator><creator>Hsu, Steven K.</creator><creator>Chen, Gregory</creator><creator>Krishnamurthy, Ram K.</creator><creator>De, Vivek K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3511-3526</orcidid></search><sort><creationdate>20170401</creationdate><title>A 4-fJ/b Delay-Hardened Physically Unclonable Function Circuit With Selective Bit Destabilization in 14-nm Trigate CMOS</title><author>Satpathy, Sudhir ; Mathew, Sanu K. ; Suresh, Vikram ; Anders, Mark A. ; Kaul, Himanshu ; Agarwal, Amit ; Hsu, Steven K. ; Chen, Gregory ; Krishnamurthy, Ram K. ; De, Vivek K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f52b60936d83a12a3a98a5a87e8b3399890d961bce0918c4ffa9f0e6c5988d283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aging</topic><topic>Aging (artificial)</topic><topic>Bit error</topic><topic>Burn-in</topic><topic>Circuit stability</topic><topic>Clocks</topic><topic>CMOS</topic><topic>Cryptography</topic><topic>Delay</topic><topic>delay hardening</topic><topic>Delays</topic><topic>Destabilization</topic><topic>Entropy</topic><topic>entropy extraction</topic><topic>Error correction</topic><topic>key generation</topic><topic>Masking</topic><topic>physically unclonable function (PUF)</topic><topic>Public Key Infrastructure</topic><topic>Security</topic><topic>selective bit destabilization</topic><topic>soft dark-bit (DB) masking</topic><topic>Transistors</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satpathy, Sudhir</creatorcontrib><creatorcontrib>Mathew, Sanu K.</creatorcontrib><creatorcontrib>Suresh, Vikram</creatorcontrib><creatorcontrib>Anders, Mark A.</creatorcontrib><creatorcontrib>Kaul, Himanshu</creatorcontrib><creatorcontrib>Agarwal, Amit</creatorcontrib><creatorcontrib>Hsu, Steven K.</creatorcontrib><creatorcontrib>Chen, Gregory</creatorcontrib><creatorcontrib>Krishnamurthy, Ram K.</creatorcontrib><creatorcontrib>De, Vivek K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satpathy, Sudhir</au><au>Mathew, Sanu K.</au><au>Suresh, Vikram</au><au>Anders, Mark A.</au><au>Kaul, Himanshu</au><au>Agarwal, Amit</au><au>Hsu, Steven K.</au><au>Chen, Gregory</au><au>Krishnamurthy, Ram K.</au><au>De, Vivek K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 4-fJ/b Delay-Hardened Physically Unclonable Function Circuit With Selective Bit Destabilization in 14-nm Trigate CMOS</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>52</volume><issue>4</issue><spage>940</spage><epage>949</epage><pages>940-949</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This paper describes a full-entropy 128-b key generation platform based on a 1024-b hybrid physically unclonable function (PUF) array, fabricated in 14-nm trigate high-k/metal-gate CMOS. Delay-hardened hybrid PUF cells use differential clock delay insertion to favor circuit evaluation in the desired direction while leveraging burn-in-induced aging for selective bit destabilization enabling quick identification and masking of unstable cells, and subsequent temporal-majority-voting with soft dark-bit masking to reduce PUF bit error by 3.9 times to 1.45% resulting in ~5 ppb failure probability. A stable full-entropy 128-b key is finally generated from the 1024 raw PUF bits using BCH error correction and AES-CBC-based entropy extraction. An all-digital design with compact PUF cell layout occupying 1.84 μm 2 achieves: 1) 4-fJ/b energy-efficiency with 3-μW leakage at 0.65 V, 70°C; 2) peak operating frequency of 1 GHz resulting in 1.2-μs key generation latency; 3) robust operation with stable key generation across 0.55-0.75 V, and 25°C-110°C; 4) 14 times separation between intra/inter-PUF hamming distances with 0.99993 entropy ensuring cryptographic quality randomness and uniqueness; 5) 48% higher PUF stability with long-term aging by leveraging transistor degradation to reinforce favorable cell bias; and 6) resiliency to power cycling attacks with common centroid clock routing measured from 49.5% hamming distance between array's evaluation and wake-up states.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2016.2636859</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3511-3526</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2017-04, Vol.52 (4), p.940-949 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_ieee_primary_7829394 |
source | IEEE Xplore (Online service) |
subjects | Aging Aging (artificial) Bit error Burn-in Circuit stability Clocks CMOS Cryptography Delay delay hardening Delays Destabilization Entropy entropy extraction Error correction key generation Masking physically unclonable function (PUF) Public Key Infrastructure Security selective bit destabilization soft dark-bit (DB) masking Transistors Uniqueness |
title | A 4-fJ/b Delay-Hardened Physically Unclonable Function Circuit With Selective Bit Destabilization in 14-nm Trigate CMOS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%204-fJ/b%20Delay-Hardened%20Physically%20Unclonable%20Function%20Circuit%20With%20Selective%20Bit%20Destabilization%20in%2014-nm%20Trigate%20CMOS&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Satpathy,%20Sudhir&rft.date=2017-04-01&rft.volume=52&rft.issue=4&rft.spage=940&rft.epage=949&rft.pages=940-949&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2016.2636859&rft_dat=%3Cproquest_ieee_%3E1883355497%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-f52b60936d83a12a3a98a5a87e8b3399890d961bce0918c4ffa9f0e6c5988d283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1883355497&rft_id=info:pmid/&rft_ieee_id=7829394&rfr_iscdi=true |