Loading…

Planarization, Fabrication, and Characterization of Three-Dimensional Magnetic Field Sensors

Nanomagnetism deals with magnetic phenomena in nanoscale structures, involving processes at the atomic level. Magnetic sensors, which exhibit the surprising giant magnetoresistance (GMR) effect, are some of the first real applications of nanotechnology, and have become very important in the last two...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nanotechnology 2018-01, Vol.17 (1), p.11-25
Main Authors: Luong, Van Su, Su, Yu-Hsin, Lu, Chih-Cheng, Jeng, Jen-Tzong, Hsu, Jen-Hwa, Liao, Ming-Han, Wu, Jong-Ching, Lai, Meng-Huang, Chang, Ching-Ray
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-28bf543561caecc78d4f6f766827c49e105b246abbaf66e3abe1085dc605bb5d3
cites cdi_FETCH-LOGICAL-c295t-28bf543561caecc78d4f6f766827c49e105b246abbaf66e3abe1085dc605bb5d3
container_end_page 25
container_issue 1
container_start_page 11
container_title IEEE transactions on nanotechnology
container_volume 17
creator Luong, Van Su
Su, Yu-Hsin
Lu, Chih-Cheng
Jeng, Jen-Tzong
Hsu, Jen-Hwa
Liao, Ming-Han
Wu, Jong-Ching
Lai, Meng-Huang
Chang, Ching-Ray
description Nanomagnetism deals with magnetic phenomena in nanoscale structures, involving processes at the atomic level. Magnetic sensors, which exhibit the surprising giant magnetoresistance (GMR) effect, are some of the first real applications of nanotechnology, and have become very important in the last two decades. In addition, high-performance magnetoresistance (MR) measurement is a critical technique in modern electrical applications, including electronic compasses, aviation navigation, motion tracking, noncontact current sensing, rotation sensing, and vehicle detection. Both GMR and tunneling magnetoresistance (TMR) sensors have been used in the state-of-art electronic compasses. A new planar design layout of a vector magnetometer is proposed in this report. It can sense variations in three-dimensional (3-D) magnetic fields. The planarization of a vector magnetometer is carried out with consideration of materials, magnetic schematics, as well as transducer circuit designs. The optimization of an advanced magnetic material for use in GMR and TMR sensors and its planarization in a 3-D design are crucial practical issues. This paper presents an overview of the planarization of vector magnetometers and the development of its applications. It focuses on recent works, covers an analytic model of magnetoresistive sensors, and methods of thin film fabrication. It also addresses the planar vector magnetometer with a flux-guide, the chopping technique, and techniques for microfabrication of substrates. Planarization in magnetic sensors will become increasingly exploited as nanomagnetism grows in importance.
doi_str_mv 10.1109/TNANO.2017.2660062
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7835300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7835300</ieee_id><sourcerecordid>1986440735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-28bf543561caecc78d4f6f766827c49e105b246abbaf66e3abe1085dc605bb5d3</originalsourceid><addsrcrecordid>eNo9UM9PwjAUbowmIvoP6GWJV4dtt3bdkSCoCYKJmHgwad66NykZG7bjoH-9RdDTe-_7lZePkEtGB4zR_HYxG87mA05ZNuBSUir5EemxPGUxpUoch10kMmZcvJ2SM-9XNCilUD3y_lxDA85-Q2fb5iaaQOGsORzQlNFoCQ5Mh3-SqK2ixdIhxnd2jY0PENTRE3w02FkTTSzWZfQSiNb5c3JSQe3x4jD75HUyXowe4un8_nE0nMaG56KLuSoqkSZCMgNoTKbKtJJVJqXimUlzZFQUPJVQFFBJiQkUAVKiNDIQhSiTPrne525c-7lF3-lVu3XhL69ZrmSa0iwRQcX3KuNa7x1WeuPsGtyXZlTvWtS_Lepdi_rQYjBd7U0WEf8NmQp5lCY_dAZvHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986440735</pqid></control><display><type>article</type><title>Planarization, Fabrication, and Characterization of Three-Dimensional Magnetic Field Sensors</title><source>IEEE Xplore (Online service)</source><creator>Luong, Van Su ; Su, Yu-Hsin ; Lu, Chih-Cheng ; Jeng, Jen-Tzong ; Hsu, Jen-Hwa ; Liao, Ming-Han ; Wu, Jong-Ching ; Lai, Meng-Huang ; Chang, Ching-Ray</creator><creatorcontrib>Luong, Van Su ; Su, Yu-Hsin ; Lu, Chih-Cheng ; Jeng, Jen-Tzong ; Hsu, Jen-Hwa ; Liao, Ming-Han ; Wu, Jong-Ching ; Lai, Meng-Huang ; Chang, Ching-Ray</creatorcontrib><description>Nanomagnetism deals with magnetic phenomena in nanoscale structures, involving processes at the atomic level. Magnetic sensors, which exhibit the surprising giant magnetoresistance (GMR) effect, are some of the first real applications of nanotechnology, and have become very important in the last two decades. In addition, high-performance magnetoresistance (MR) measurement is a critical technique in modern electrical applications, including electronic compasses, aviation navigation, motion tracking, noncontact current sensing, rotation sensing, and vehicle detection. Both GMR and tunneling magnetoresistance (TMR) sensors have been used in the state-of-art electronic compasses. A new planar design layout of a vector magnetometer is proposed in this report. It can sense variations in three-dimensional (3-D) magnetic fields. The planarization of a vector magnetometer is carried out with consideration of materials, magnetic schematics, as well as transducer circuit designs. The optimization of an advanced magnetic material for use in GMR and TMR sensors and its planarization in a 3-D design are crucial practical issues. This paper presents an overview of the planarization of vector magnetometers and the development of its applications. It focuses on recent works, covers an analytic model of magnetoresistive sensors, and methods of thin film fabrication. It also addresses the planar vector magnetometer with a flux-guide, the chopping technique, and techniques for microfabrication of substrates. Planarization in magnetic sensors will become increasingly exploited as nanomagnetism grows in importance.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2017.2660062</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomic structure ; Chemical-mechanical polishing ; Circuit design ; Compasses ; Cutting ; Flux-guide ; Giant magnetoresistance ; GMR ; magnetic chopping ; Magnetic fields ; Magnetic materials ; Magnetic multilayers ; Magnetic sensors ; Magnetometers ; Magnetoresistance ; magnetoresistive sensors ; Magnetoresistivity ; Mathematical models ; Nanotechnology ; Perpendicular magnetic anisotropy ; planar vector magnetometers ; Sensors ; Substrates ; Tunneling magnetoresistance ; v-groove</subject><ispartof>IEEE transactions on nanotechnology, 2018-01, Vol.17 (1), p.11-25</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-28bf543561caecc78d4f6f766827c49e105b246abbaf66e3abe1085dc605bb5d3</citedby><cites>FETCH-LOGICAL-c295t-28bf543561caecc78d4f6f766827c49e105b246abbaf66e3abe1085dc605bb5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7835300$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Luong, Van Su</creatorcontrib><creatorcontrib>Su, Yu-Hsin</creatorcontrib><creatorcontrib>Lu, Chih-Cheng</creatorcontrib><creatorcontrib>Jeng, Jen-Tzong</creatorcontrib><creatorcontrib>Hsu, Jen-Hwa</creatorcontrib><creatorcontrib>Liao, Ming-Han</creatorcontrib><creatorcontrib>Wu, Jong-Ching</creatorcontrib><creatorcontrib>Lai, Meng-Huang</creatorcontrib><creatorcontrib>Chang, Ching-Ray</creatorcontrib><title>Planarization, Fabrication, and Characterization of Three-Dimensional Magnetic Field Sensors</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Nanomagnetism deals with magnetic phenomena in nanoscale structures, involving processes at the atomic level. Magnetic sensors, which exhibit the surprising giant magnetoresistance (GMR) effect, are some of the first real applications of nanotechnology, and have become very important in the last two decades. In addition, high-performance magnetoresistance (MR) measurement is a critical technique in modern electrical applications, including electronic compasses, aviation navigation, motion tracking, noncontact current sensing, rotation sensing, and vehicle detection. Both GMR and tunneling magnetoresistance (TMR) sensors have been used in the state-of-art electronic compasses. A new planar design layout of a vector magnetometer is proposed in this report. It can sense variations in three-dimensional (3-D) magnetic fields. The planarization of a vector magnetometer is carried out with consideration of materials, magnetic schematics, as well as transducer circuit designs. The optimization of an advanced magnetic material for use in GMR and TMR sensors and its planarization in a 3-D design are crucial practical issues. This paper presents an overview of the planarization of vector magnetometers and the development of its applications. It focuses on recent works, covers an analytic model of magnetoresistive sensors, and methods of thin film fabrication. It also addresses the planar vector magnetometer with a flux-guide, the chopping technique, and techniques for microfabrication of substrates. Planarization in magnetic sensors will become increasingly exploited as nanomagnetism grows in importance.</description><subject>Atomic structure</subject><subject>Chemical-mechanical polishing</subject><subject>Circuit design</subject><subject>Compasses</subject><subject>Cutting</subject><subject>Flux-guide</subject><subject>Giant magnetoresistance</subject><subject>GMR</subject><subject>magnetic chopping</subject><subject>Magnetic fields</subject><subject>Magnetic materials</subject><subject>Magnetic multilayers</subject><subject>Magnetic sensors</subject><subject>Magnetometers</subject><subject>Magnetoresistance</subject><subject>magnetoresistive sensors</subject><subject>Magnetoresistivity</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Perpendicular magnetic anisotropy</subject><subject>planar vector magnetometers</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Tunneling magnetoresistance</subject><subject>v-groove</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9UM9PwjAUbowmIvoP6GWJV4dtt3bdkSCoCYKJmHgwad66NykZG7bjoH-9RdDTe-_7lZePkEtGB4zR_HYxG87mA05ZNuBSUir5EemxPGUxpUoch10kMmZcvJ2SM-9XNCilUD3y_lxDA85-Q2fb5iaaQOGsORzQlNFoCQ5Mh3-SqK2ixdIhxnd2jY0PENTRE3w02FkTTSzWZfQSiNb5c3JSQe3x4jD75HUyXowe4un8_nE0nMaG56KLuSoqkSZCMgNoTKbKtJJVJqXimUlzZFQUPJVQFFBJiQkUAVKiNDIQhSiTPrne525c-7lF3-lVu3XhL69ZrmSa0iwRQcX3KuNa7x1WeuPsGtyXZlTvWtS_Lepdi_rQYjBd7U0WEf8NmQp5lCY_dAZvHg</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Luong, Van Su</creator><creator>Su, Yu-Hsin</creator><creator>Lu, Chih-Cheng</creator><creator>Jeng, Jen-Tzong</creator><creator>Hsu, Jen-Hwa</creator><creator>Liao, Ming-Han</creator><creator>Wu, Jong-Ching</creator><creator>Lai, Meng-Huang</creator><creator>Chang, Ching-Ray</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201801</creationdate><title>Planarization, Fabrication, and Characterization of Three-Dimensional Magnetic Field Sensors</title><author>Luong, Van Su ; Su, Yu-Hsin ; Lu, Chih-Cheng ; Jeng, Jen-Tzong ; Hsu, Jen-Hwa ; Liao, Ming-Han ; Wu, Jong-Ching ; Lai, Meng-Huang ; Chang, Ching-Ray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-28bf543561caecc78d4f6f766827c49e105b246abbaf66e3abe1085dc605bb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic structure</topic><topic>Chemical-mechanical polishing</topic><topic>Circuit design</topic><topic>Compasses</topic><topic>Cutting</topic><topic>Flux-guide</topic><topic>Giant magnetoresistance</topic><topic>GMR</topic><topic>magnetic chopping</topic><topic>Magnetic fields</topic><topic>Magnetic materials</topic><topic>Magnetic multilayers</topic><topic>Magnetic sensors</topic><topic>Magnetometers</topic><topic>Magnetoresistance</topic><topic>magnetoresistive sensors</topic><topic>Magnetoresistivity</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Perpendicular magnetic anisotropy</topic><topic>planar vector magnetometers</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Tunneling magnetoresistance</topic><topic>v-groove</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luong, Van Su</creatorcontrib><creatorcontrib>Su, Yu-Hsin</creatorcontrib><creatorcontrib>Lu, Chih-Cheng</creatorcontrib><creatorcontrib>Jeng, Jen-Tzong</creatorcontrib><creatorcontrib>Hsu, Jen-Hwa</creatorcontrib><creatorcontrib>Liao, Ming-Han</creatorcontrib><creatorcontrib>Wu, Jong-Ching</creatorcontrib><creatorcontrib>Lai, Meng-Huang</creatorcontrib><creatorcontrib>Chang, Ching-Ray</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luong, Van Su</au><au>Su, Yu-Hsin</au><au>Lu, Chih-Cheng</au><au>Jeng, Jen-Tzong</au><au>Hsu, Jen-Hwa</au><au>Liao, Ming-Han</au><au>Wu, Jong-Ching</au><au>Lai, Meng-Huang</au><au>Chang, Ching-Ray</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planarization, Fabrication, and Characterization of Three-Dimensional Magnetic Field Sensors</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2018-01</date><risdate>2018</risdate><volume>17</volume><issue>1</issue><spage>11</spage><epage>25</epage><pages>11-25</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Nanomagnetism deals with magnetic phenomena in nanoscale structures, involving processes at the atomic level. Magnetic sensors, which exhibit the surprising giant magnetoresistance (GMR) effect, are some of the first real applications of nanotechnology, and have become very important in the last two decades. In addition, high-performance magnetoresistance (MR) measurement is a critical technique in modern electrical applications, including electronic compasses, aviation navigation, motion tracking, noncontact current sensing, rotation sensing, and vehicle detection. Both GMR and tunneling magnetoresistance (TMR) sensors have been used in the state-of-art electronic compasses. A new planar design layout of a vector magnetometer is proposed in this report. It can sense variations in three-dimensional (3-D) magnetic fields. The planarization of a vector magnetometer is carried out with consideration of materials, magnetic schematics, as well as transducer circuit designs. The optimization of an advanced magnetic material for use in GMR and TMR sensors and its planarization in a 3-D design are crucial practical issues. This paper presents an overview of the planarization of vector magnetometers and the development of its applications. It focuses on recent works, covers an analytic model of magnetoresistive sensors, and methods of thin film fabrication. It also addresses the planar vector magnetometer with a flux-guide, the chopping technique, and techniques for microfabrication of substrates. Planarization in magnetic sensors will become increasingly exploited as nanomagnetism grows in importance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2017.2660062</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2018-01, Vol.17 (1), p.11-25
issn 1536-125X
1941-0085
language eng
recordid cdi_ieee_primary_7835300
source IEEE Xplore (Online service)
subjects Atomic structure
Chemical-mechanical polishing
Circuit design
Compasses
Cutting
Flux-guide
Giant magnetoresistance
GMR
magnetic chopping
Magnetic fields
Magnetic materials
Magnetic multilayers
Magnetic sensors
Magnetometers
Magnetoresistance
magnetoresistive sensors
Magnetoresistivity
Mathematical models
Nanotechnology
Perpendicular magnetic anisotropy
planar vector magnetometers
Sensors
Substrates
Tunneling magnetoresistance
v-groove
title Planarization, Fabrication, and Characterization of Three-Dimensional Magnetic Field Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planarization,%20Fabrication,%20and%20Characterization%20of%20Three-Dimensional%20Magnetic%20Field%20Sensors&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Luong,%20Van%20Su&rft.date=2018-01&rft.volume=17&rft.issue=1&rft.spage=11&rft.epage=25&rft.pages=11-25&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2017.2660062&rft_dat=%3Cproquest_ieee_%3E1986440735%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-28bf543561caecc78d4f6f766827c49e105b246abbaf66e3abe1085dc605bb5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1986440735&rft_id=info:pmid/&rft_ieee_id=7835300&rfr_iscdi=true