Loading…

Direct Mining of Subjectively Interesting Relational Patterns

Data is typically complex and relational. Therefore, the development of relational data mining methods is an increasingly active topic of research. Recent work has resulted in new formalisations of patterns in relational data and in a way to quantify their interestingness in a subjective manner, tak...

Full description

Saved in:
Bibliographic Details
Main Authors: Guns, Tias, Aknin, Achille, Lijffijt, Jefrey, De Bie, Tijl
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 918
container_issue
container_start_page 913
container_title
container_volume
creator Guns, Tias
Aknin, Achille
Lijffijt, Jefrey
De Bie, Tijl
description Data is typically complex and relational. Therefore, the development of relational data mining methods is an increasingly active topic of research. Recent work has resulted in new formalisations of patterns in relational data and in a way to quantify their interestingness in a subjective manner, taking into account the data analyst's prior beliefs about the data. Yet, a scalable algorithm to find such most interesting patterns is lacking. We introduce a new algorithm based on two notions: (1) the use of Constraint Programming, which results in a notably shorter development time, faster runtimes, and more flexibility for extensions such as branch-and-bound search, and (2), the direct search for the most interesting patterns only, instead of exhaustive enumeration of patterns before ranking them. Through empirical evaluation, we find that our novel bounds yield speedups up to several orders of magnitude, especially on dense data with a simple schema. This makes it possible to mine the most subjectively-interesting relational patterns present in databases where this was previously impractical or impossible.
doi_str_mv 10.1109/ICDM.2016.0112
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7837925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7837925</ieee_id><sourcerecordid>7837925</sourcerecordid><originalsourceid>FETCH-LOGICAL-i602-7fb715bff692270fb2430c7c933cdeb1c55c061dbd636e4ba1d174529e5b593c3</originalsourceid><addsrcrecordid>eNotjMtKw0AUQEdBsNZu3bjJDyTeO3cemYULSX0EWhTtvsxMbmRKTCWJQv_eiq4OnANHiCuEAhHcTV0t14UENAUgyhOxcLZEDQ60siRPxUySVXmpSnMuLsZxB0DGEMzE7TINHKdsnfrUv2f7Nnv7CrujSd_cHbK6n3jgcfptr9z5Ke1732Uvfjr6frwUZ63vRl78cy42D_eb6ilfPT_W1d0qTwZkbttgUYe2NU5KC22QiiDa6IhiwwGj1hEMNqExZFgFjw1apaVjHbSjSHNx_bdNzLz9HNKHHw5bW5J1UtMP9eRHpw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Direct Mining of Subjectively Interesting Relational Patterns</title><source>IEEE Xplore All Conference Series</source><creator>Guns, Tias ; Aknin, Achille ; Lijffijt, Jefrey ; De Bie, Tijl</creator><creatorcontrib>Guns, Tias ; Aknin, Achille ; Lijffijt, Jefrey ; De Bie, Tijl</creatorcontrib><description>Data is typically complex and relational. Therefore, the development of relational data mining methods is an increasingly active topic of research. Recent work has resulted in new formalisations of patterns in relational data and in a way to quantify their interestingness in a subjective manner, taking into account the data analyst's prior beliefs about the data. Yet, a scalable algorithm to find such most interesting patterns is lacking. We introduce a new algorithm based on two notions: (1) the use of Constraint Programming, which results in a notably shorter development time, faster runtimes, and more flexibility for extensions such as branch-and-bound search, and (2), the direct search for the most interesting patterns only, instead of exhaustive enumeration of patterns before ranking them. Through empirical evaluation, we find that our novel bounds yield speedups up to several orders of magnitude, especially on dense data with a simple schema. This makes it possible to mine the most subjectively-interesting relational patterns present in databases where this was previously impractical or impossible.</description><identifier>EISSN: 2374-8486</identifier><identifier>EISBN: 9781509054732</identifier><identifier>EISBN: 1509054731</identifier><identifier>DOI: 10.1109/ICDM.2016.0112</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Data mining ; Itemsets ; Motion pictures ; Programming ; Relational databases</subject><ispartof>2016 IEEE 16th International Conference on Data Mining (ICDM), 2016, p.913-918</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7837925$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7837925$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guns, Tias</creatorcontrib><creatorcontrib>Aknin, Achille</creatorcontrib><creatorcontrib>Lijffijt, Jefrey</creatorcontrib><creatorcontrib>De Bie, Tijl</creatorcontrib><title>Direct Mining of Subjectively Interesting Relational Patterns</title><title>2016 IEEE 16th International Conference on Data Mining (ICDM)</title><addtitle>ICDM</addtitle><description>Data is typically complex and relational. Therefore, the development of relational data mining methods is an increasingly active topic of research. Recent work has resulted in new formalisations of patterns in relational data and in a way to quantify their interestingness in a subjective manner, taking into account the data analyst's prior beliefs about the data. Yet, a scalable algorithm to find such most interesting patterns is lacking. We introduce a new algorithm based on two notions: (1) the use of Constraint Programming, which results in a notably shorter development time, faster runtimes, and more flexibility for extensions such as branch-and-bound search, and (2), the direct search for the most interesting patterns only, instead of exhaustive enumeration of patterns before ranking them. Through empirical evaluation, we find that our novel bounds yield speedups up to several orders of magnitude, especially on dense data with a simple schema. This makes it possible to mine the most subjectively-interesting relational patterns present in databases where this was previously impractical or impossible.</description><subject>Algorithm design and analysis</subject><subject>Data mining</subject><subject>Itemsets</subject><subject>Motion pictures</subject><subject>Programming</subject><subject>Relational databases</subject><issn>2374-8486</issn><isbn>9781509054732</isbn><isbn>1509054731</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtKw0AUQEdBsNZu3bjJDyTeO3cemYULSX0EWhTtvsxMbmRKTCWJQv_eiq4OnANHiCuEAhHcTV0t14UENAUgyhOxcLZEDQ60siRPxUySVXmpSnMuLsZxB0DGEMzE7TINHKdsnfrUv2f7Nnv7CrujSd_cHbK6n3jgcfptr9z5Ke1732Uvfjr6frwUZ63vRl78cy42D_eb6ilfPT_W1d0qTwZkbttgUYe2NU5KC22QiiDa6IhiwwGj1hEMNqExZFgFjw1apaVjHbSjSHNx_bdNzLz9HNKHHw5bW5J1UtMP9eRHpw</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Guns, Tias</creator><creator>Aknin, Achille</creator><creator>Lijffijt, Jefrey</creator><creator>De Bie, Tijl</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201612</creationdate><title>Direct Mining of Subjectively Interesting Relational Patterns</title><author>Guns, Tias ; Aknin, Achille ; Lijffijt, Jefrey ; De Bie, Tijl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i602-7fb715bff692270fb2430c7c933cdeb1c55c061dbd636e4ba1d174529e5b593c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Data mining</topic><topic>Itemsets</topic><topic>Motion pictures</topic><topic>Programming</topic><topic>Relational databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Guns, Tias</creatorcontrib><creatorcontrib>Aknin, Achille</creatorcontrib><creatorcontrib>Lijffijt, Jefrey</creatorcontrib><creatorcontrib>De Bie, Tijl</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guns, Tias</au><au>Aknin, Achille</au><au>Lijffijt, Jefrey</au><au>De Bie, Tijl</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Direct Mining of Subjectively Interesting Relational Patterns</atitle><btitle>2016 IEEE 16th International Conference on Data Mining (ICDM)</btitle><stitle>ICDM</stitle><date>2016-12</date><risdate>2016</risdate><spage>913</spage><epage>918</epage><pages>913-918</pages><eissn>2374-8486</eissn><eisbn>9781509054732</eisbn><eisbn>1509054731</eisbn><coden>IEEPAD</coden><abstract>Data is typically complex and relational. Therefore, the development of relational data mining methods is an increasingly active topic of research. Recent work has resulted in new formalisations of patterns in relational data and in a way to quantify their interestingness in a subjective manner, taking into account the data analyst's prior beliefs about the data. Yet, a scalable algorithm to find such most interesting patterns is lacking. We introduce a new algorithm based on two notions: (1) the use of Constraint Programming, which results in a notably shorter development time, faster runtimes, and more flexibility for extensions such as branch-and-bound search, and (2), the direct search for the most interesting patterns only, instead of exhaustive enumeration of patterns before ranking them. Through empirical evaluation, we find that our novel bounds yield speedups up to several orders of magnitude, especially on dense data with a simple schema. This makes it possible to mine the most subjectively-interesting relational patterns present in databases where this was previously impractical or impossible.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2016.0112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2374-8486
ispartof 2016 IEEE 16th International Conference on Data Mining (ICDM), 2016, p.913-918
issn 2374-8486
language eng
recordid cdi_ieee_primary_7837925
source IEEE Xplore All Conference Series
subjects Algorithm design and analysis
Data mining
Itemsets
Motion pictures
Programming
Relational databases
title Direct Mining of Subjectively Interesting Relational Patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Direct%20Mining%20of%20Subjectively%20Interesting%20Relational%20Patterns&rft.btitle=2016%20IEEE%2016th%20International%20Conference%20on%20Data%20Mining%20(ICDM)&rft.au=Guns,%20Tias&rft.date=2016-12&rft.spage=913&rft.epage=918&rft.pages=913-918&rft.eissn=2374-8486&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDM.2016.0112&rft.eisbn=9781509054732&rft.eisbn_list=1509054731&rft_dat=%3Cieee_CHZPO%3E7837925%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i602-7fb715bff692270fb2430c7c933cdeb1c55c061dbd636e4ba1d174529e5b593c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7837925&rfr_iscdi=true