Loading…
Direct Mining of Subjectively Interesting Relational Patterns
Data is typically complex and relational. Therefore, the development of relational data mining methods is an increasingly active topic of research. Recent work has resulted in new formalisations of patterns in relational data and in a way to quantify their interestingness in a subjective manner, tak...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 918 |
container_issue | |
container_start_page | 913 |
container_title | |
container_volume | |
creator | Guns, Tias Aknin, Achille Lijffijt, Jefrey De Bie, Tijl |
description | Data is typically complex and relational. Therefore, the development of relational data mining methods is an increasingly active topic of research. Recent work has resulted in new formalisations of patterns in relational data and in a way to quantify their interestingness in a subjective manner, taking into account the data analyst's prior beliefs about the data. Yet, a scalable algorithm to find such most interesting patterns is lacking. We introduce a new algorithm based on two notions: (1) the use of Constraint Programming, which results in a notably shorter development time, faster runtimes, and more flexibility for extensions such as branch-and-bound search, and (2), the direct search for the most interesting patterns only, instead of exhaustive enumeration of patterns before ranking them. Through empirical evaluation, we find that our novel bounds yield speedups up to several orders of magnitude, especially on dense data with a simple schema. This makes it possible to mine the most subjectively-interesting relational patterns present in databases where this was previously impractical or impossible. |
doi_str_mv | 10.1109/ICDM.2016.0112 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7837925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7837925</ieee_id><sourcerecordid>7837925</sourcerecordid><originalsourceid>FETCH-LOGICAL-i602-7fb715bff692270fb2430c7c933cdeb1c55c061dbd636e4ba1d174529e5b593c3</originalsourceid><addsrcrecordid>eNotjMtKw0AUQEdBsNZu3bjJDyTeO3cemYULSX0EWhTtvsxMbmRKTCWJQv_eiq4OnANHiCuEAhHcTV0t14UENAUgyhOxcLZEDQ60siRPxUySVXmpSnMuLsZxB0DGEMzE7TINHKdsnfrUv2f7Nnv7CrujSd_cHbK6n3jgcfptr9z5Ke1732Uvfjr6frwUZ63vRl78cy42D_eb6ilfPT_W1d0qTwZkbttgUYe2NU5KC22QiiDa6IhiwwGj1hEMNqExZFgFjw1apaVjHbSjSHNx_bdNzLz9HNKHHw5bW5J1UtMP9eRHpw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Direct Mining of Subjectively Interesting Relational Patterns</title><source>IEEE Xplore All Conference Series</source><creator>Guns, Tias ; Aknin, Achille ; Lijffijt, Jefrey ; De Bie, Tijl</creator><creatorcontrib>Guns, Tias ; Aknin, Achille ; Lijffijt, Jefrey ; De Bie, Tijl</creatorcontrib><description>Data is typically complex and relational. Therefore, the development of relational data mining methods is an increasingly active topic of research. Recent work has resulted in new formalisations of patterns in relational data and in a way to quantify their interestingness in a subjective manner, taking into account the data analyst's prior beliefs about the data. Yet, a scalable algorithm to find such most interesting patterns is lacking. We introduce a new algorithm based on two notions: (1) the use of Constraint Programming, which results in a notably shorter development time, faster runtimes, and more flexibility for extensions such as branch-and-bound search, and (2), the direct search for the most interesting patterns only, instead of exhaustive enumeration of patterns before ranking them. Through empirical evaluation, we find that our novel bounds yield speedups up to several orders of magnitude, especially on dense data with a simple schema. This makes it possible to mine the most subjectively-interesting relational patterns present in databases where this was previously impractical or impossible.</description><identifier>EISSN: 2374-8486</identifier><identifier>EISBN: 9781509054732</identifier><identifier>EISBN: 1509054731</identifier><identifier>DOI: 10.1109/ICDM.2016.0112</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Data mining ; Itemsets ; Motion pictures ; Programming ; Relational databases</subject><ispartof>2016 IEEE 16th International Conference on Data Mining (ICDM), 2016, p.913-918</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7837925$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7837925$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guns, Tias</creatorcontrib><creatorcontrib>Aknin, Achille</creatorcontrib><creatorcontrib>Lijffijt, Jefrey</creatorcontrib><creatorcontrib>De Bie, Tijl</creatorcontrib><title>Direct Mining of Subjectively Interesting Relational Patterns</title><title>2016 IEEE 16th International Conference on Data Mining (ICDM)</title><addtitle>ICDM</addtitle><description>Data is typically complex and relational. Therefore, the development of relational data mining methods is an increasingly active topic of research. Recent work has resulted in new formalisations of patterns in relational data and in a way to quantify their interestingness in a subjective manner, taking into account the data analyst's prior beliefs about the data. Yet, a scalable algorithm to find such most interesting patterns is lacking. We introduce a new algorithm based on two notions: (1) the use of Constraint Programming, which results in a notably shorter development time, faster runtimes, and more flexibility for extensions such as branch-and-bound search, and (2), the direct search for the most interesting patterns only, instead of exhaustive enumeration of patterns before ranking them. Through empirical evaluation, we find that our novel bounds yield speedups up to several orders of magnitude, especially on dense data with a simple schema. This makes it possible to mine the most subjectively-interesting relational patterns present in databases where this was previously impractical or impossible.</description><subject>Algorithm design and analysis</subject><subject>Data mining</subject><subject>Itemsets</subject><subject>Motion pictures</subject><subject>Programming</subject><subject>Relational databases</subject><issn>2374-8486</issn><isbn>9781509054732</isbn><isbn>1509054731</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtKw0AUQEdBsNZu3bjJDyTeO3cemYULSX0EWhTtvsxMbmRKTCWJQv_eiq4OnANHiCuEAhHcTV0t14UENAUgyhOxcLZEDQ60siRPxUySVXmpSnMuLsZxB0DGEMzE7TINHKdsnfrUv2f7Nnv7CrujSd_cHbK6n3jgcfptr9z5Ke1732Uvfjr6frwUZ63vRl78cy42D_eb6ilfPT_W1d0qTwZkbttgUYe2NU5KC22QiiDa6IhiwwGj1hEMNqExZFgFjw1apaVjHbSjSHNx_bdNzLz9HNKHHw5bW5J1UtMP9eRHpw</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Guns, Tias</creator><creator>Aknin, Achille</creator><creator>Lijffijt, Jefrey</creator><creator>De Bie, Tijl</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201612</creationdate><title>Direct Mining of Subjectively Interesting Relational Patterns</title><author>Guns, Tias ; Aknin, Achille ; Lijffijt, Jefrey ; De Bie, Tijl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i602-7fb715bff692270fb2430c7c933cdeb1c55c061dbd636e4ba1d174529e5b593c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Data mining</topic><topic>Itemsets</topic><topic>Motion pictures</topic><topic>Programming</topic><topic>Relational databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Guns, Tias</creatorcontrib><creatorcontrib>Aknin, Achille</creatorcontrib><creatorcontrib>Lijffijt, Jefrey</creatorcontrib><creatorcontrib>De Bie, Tijl</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guns, Tias</au><au>Aknin, Achille</au><au>Lijffijt, Jefrey</au><au>De Bie, Tijl</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Direct Mining of Subjectively Interesting Relational Patterns</atitle><btitle>2016 IEEE 16th International Conference on Data Mining (ICDM)</btitle><stitle>ICDM</stitle><date>2016-12</date><risdate>2016</risdate><spage>913</spage><epage>918</epage><pages>913-918</pages><eissn>2374-8486</eissn><eisbn>9781509054732</eisbn><eisbn>1509054731</eisbn><coden>IEEPAD</coden><abstract>Data is typically complex and relational. Therefore, the development of relational data mining methods is an increasingly active topic of research. Recent work has resulted in new formalisations of patterns in relational data and in a way to quantify their interestingness in a subjective manner, taking into account the data analyst's prior beliefs about the data. Yet, a scalable algorithm to find such most interesting patterns is lacking. We introduce a new algorithm based on two notions: (1) the use of Constraint Programming, which results in a notably shorter development time, faster runtimes, and more flexibility for extensions such as branch-and-bound search, and (2), the direct search for the most interesting patterns only, instead of exhaustive enumeration of patterns before ranking them. Through empirical evaluation, we find that our novel bounds yield speedups up to several orders of magnitude, especially on dense data with a simple schema. This makes it possible to mine the most subjectively-interesting relational patterns present in databases where this was previously impractical or impossible.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2016.0112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2374-8486 |
ispartof | 2016 IEEE 16th International Conference on Data Mining (ICDM), 2016, p.913-918 |
issn | 2374-8486 |
language | eng |
recordid | cdi_ieee_primary_7837925 |
source | IEEE Xplore All Conference Series |
subjects | Algorithm design and analysis Data mining Itemsets Motion pictures Programming Relational databases |
title | Direct Mining of Subjectively Interesting Relational Patterns |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Direct%20Mining%20of%20Subjectively%20Interesting%20Relational%20Patterns&rft.btitle=2016%20IEEE%2016th%20International%20Conference%20on%20Data%20Mining%20(ICDM)&rft.au=Guns,%20Tias&rft.date=2016-12&rft.spage=913&rft.epage=918&rft.pages=913-918&rft.eissn=2374-8486&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDM.2016.0112&rft.eisbn=9781509054732&rft.eisbn_list=1509054731&rft_dat=%3Cieee_CHZPO%3E7837925%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i602-7fb715bff692270fb2430c7c933cdeb1c55c061dbd636e4ba1d174529e5b593c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7837925&rfr_iscdi=true |