Loading…

Indexing using a spectral encoding of topological structure

In an object recognition system, if the extracted image features are multilevel or multiscale, the indexing structure may take the form of a tree. Such structures are not only common in computer vision, but also appear in linguistics, graphics, computational biology, and a wide range of other domain...

Full description

Saved in:
Bibliographic Details
Main Authors: Shokoufandeh, A., Dickinson, S.J., Siddiqi, K., Zucker, S.W.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 497 Vol. 2
container_issue
container_start_page 491
container_title
container_volume 2
creator Shokoufandeh, A.
Dickinson, S.J.
Siddiqi, K.
Zucker, S.W.
description In an object recognition system, if the extracted image features are multilevel or multiscale, the indexing structure may take the form of a tree. Such structures are not only common in computer vision, but also appear in linguistics, graphics, computational biology, and a wide range of other domains. In this paper, we develop an indexing mechanism that maps the topological structure of a tree into a low-dimensional vector space. Based on a novel eigenvalue characterization of a tree, this topological signature allows us to efficiently retrieve a small set of candidates from a database of models. To accommodate occlusion and local deformation, local evidence is accumulated in each of the tree's topological subspaces. We demonstrate the approach with a series of indexing experiments in the domain of 2-D object recognition.
doi_str_mv 10.1109/CVPR.1999.784726
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_784726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>784726</ieee_id><sourcerecordid>784726</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-6267d87f0db4af94c2f2e20b5b3a6fe8fe8a6c23baeb8d569388aaa21de1d9ff3</originalsourceid><addsrcrecordid>eNotj1FLwzAUhQMqOOfexaf-gdbcpE1y8UmKzsFAEfV1pMnNqNS2JC3ov3djwuE78D0cOIzdAC8AON7Vn69vBSBioU2phTpjK9SGa4UVhxLxnC2AK5krBLxkVyl9cS6kFnzB7je9p5-232dzOtJmaSQ3Rdtl1LvBH90QsmkYh27Yt-7g0xRnN82RrtlFsF2i1X8v2cfT43v9nG9f1pv6YZu3AGbKlVDaGx24b0obsHQiCBK8qRppVSBziFVOyMZSY3ylUBpjrRXgCTyGIJfs9rTbEtFujO23jb-701X5B20JST8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Indexing using a spectral encoding of topological structure</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shokoufandeh, A. ; Dickinson, S.J. ; Siddiqi, K. ; Zucker, S.W.</creator><creatorcontrib>Shokoufandeh, A. ; Dickinson, S.J. ; Siddiqi, K. ; Zucker, S.W.</creatorcontrib><description>In an object recognition system, if the extracted image features are multilevel or multiscale, the indexing structure may take the form of a tree. Such structures are not only common in computer vision, but also appear in linguistics, graphics, computational biology, and a wide range of other domains. In this paper, we develop an indexing mechanism that maps the topological structure of a tree into a low-dimensional vector space. Based on a novel eigenvalue characterization of a tree, this topological signature allows us to efficiently retrieve a small set of candidates from a database of models. To accommodate occlusion and local deformation, local evidence is accumulated in each of the tree's topological subspaces. We demonstrate the approach with a series of indexing experiments in the domain of 2-D object recognition.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9780769501499</identifier><identifier>ISBN: 0769501494</identifier><identifier>DOI: 10.1109/CVPR.1999.784726</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational biology ; Computer graphics ; Computer vision ; Eigenvalues and eigenfunctions ; Encoding ; Feature extraction ; Indexing ; Information retrieval ; Object recognition ; Tree graphs</subject><ispartof>Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), 1999, Vol.2, p.491-497 Vol. 2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/784726$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/784726$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shokoufandeh, A.</creatorcontrib><creatorcontrib>Dickinson, S.J.</creatorcontrib><creatorcontrib>Siddiqi, K.</creatorcontrib><creatorcontrib>Zucker, S.W.</creatorcontrib><title>Indexing using a spectral encoding of topological structure</title><title>Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)</title><addtitle>CVPR</addtitle><description>In an object recognition system, if the extracted image features are multilevel or multiscale, the indexing structure may take the form of a tree. Such structures are not only common in computer vision, but also appear in linguistics, graphics, computational biology, and a wide range of other domains. In this paper, we develop an indexing mechanism that maps the topological structure of a tree into a low-dimensional vector space. Based on a novel eigenvalue characterization of a tree, this topological signature allows us to efficiently retrieve a small set of candidates from a database of models. To accommodate occlusion and local deformation, local evidence is accumulated in each of the tree's topological subspaces. We demonstrate the approach with a series of indexing experiments in the domain of 2-D object recognition.</description><subject>Computational biology</subject><subject>Computer graphics</subject><subject>Computer vision</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>Indexing</subject><subject>Information retrieval</subject><subject>Object recognition</subject><subject>Tree graphs</subject><issn>1063-6919</issn><isbn>9780769501499</isbn><isbn>0769501494</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1FLwzAUhQMqOOfexaf-gdbcpE1y8UmKzsFAEfV1pMnNqNS2JC3ov3djwuE78D0cOIzdAC8AON7Vn69vBSBioU2phTpjK9SGa4UVhxLxnC2AK5krBLxkVyl9cS6kFnzB7je9p5-232dzOtJmaSQ3Rdtl1LvBH90QsmkYh27Yt-7g0xRnN82RrtlFsF2i1X8v2cfT43v9nG9f1pv6YZu3AGbKlVDaGx24b0obsHQiCBK8qRppVSBziFVOyMZSY3ylUBpjrRXgCTyGIJfs9rTbEtFujO23jb-701X5B20JST8</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Shokoufandeh, A.</creator><creator>Dickinson, S.J.</creator><creator>Siddiqi, K.</creator><creator>Zucker, S.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Indexing using a spectral encoding of topological structure</title><author>Shokoufandeh, A. ; Dickinson, S.J. ; Siddiqi, K. ; Zucker, S.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-6267d87f0db4af94c2f2e20b5b3a6fe8fe8a6c23baeb8d569388aaa21de1d9ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Computational biology</topic><topic>Computer graphics</topic><topic>Computer vision</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>Indexing</topic><topic>Information retrieval</topic><topic>Object recognition</topic><topic>Tree graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Shokoufandeh, A.</creatorcontrib><creatorcontrib>Dickinson, S.J.</creatorcontrib><creatorcontrib>Siddiqi, K.</creatorcontrib><creatorcontrib>Zucker, S.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shokoufandeh, A.</au><au>Dickinson, S.J.</au><au>Siddiqi, K.</au><au>Zucker, S.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Indexing using a spectral encoding of topological structure</atitle><btitle>Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)</btitle><stitle>CVPR</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>491</spage><epage>497 Vol. 2</epage><pages>491-497 Vol. 2</pages><issn>1063-6919</issn><isbn>9780769501499</isbn><isbn>0769501494</isbn><abstract>In an object recognition system, if the extracted image features are multilevel or multiscale, the indexing structure may take the form of a tree. Such structures are not only common in computer vision, but also appear in linguistics, graphics, computational biology, and a wide range of other domains. In this paper, we develop an indexing mechanism that maps the topological structure of a tree into a low-dimensional vector space. Based on a novel eigenvalue characterization of a tree, this topological signature allows us to efficiently retrieve a small set of candidates from a database of models. To accommodate occlusion and local deformation, local evidence is accumulated in each of the tree's topological subspaces. We demonstrate the approach with a series of indexing experiments in the domain of 2-D object recognition.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.1999.784726</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), 1999, Vol.2, p.491-497 Vol. 2
issn 1063-6919
language eng
recordid cdi_ieee_primary_784726
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational biology
Computer graphics
Computer vision
Eigenvalues and eigenfunctions
Encoding
Feature extraction
Indexing
Information retrieval
Object recognition
Tree graphs
title Indexing using a spectral encoding of topological structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Indexing%20using%20a%20spectral%20encoding%20of%20topological%20structure&rft.btitle=Proceedings.%201999%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(Cat.%20No%20PR00149)&rft.au=Shokoufandeh,%20A.&rft.date=1999&rft.volume=2&rft.spage=491&rft.epage=497%20Vol.%202&rft.pages=491-497%20Vol.%202&rft.issn=1063-6919&rft.isbn=9780769501499&rft.isbn_list=0769501494&rft_id=info:doi/10.1109/CVPR.1999.784726&rft_dat=%3Cieee_6IE%3E784726%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-6267d87f0db4af94c2f2e20b5b3a6fe8fe8a6c23baeb8d569388aaa21de1d9ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=784726&rfr_iscdi=true