Loading…
Effect of Local Support Configuration on the Precision of Numerical Solutions of Poisson Equation Obtained With Differential Quadrature Method
Differential quadrature methods are devised to numerically solve ordinary and partial differential equations by approximating the derivatives of the unknown function at points of a cloud defined on the domain of interest as weighted sums of the values of such function at other points of the cloud. L...
Saved in:
Published in: | IEEE transactions on magnetics 2017-06, Vol.53 (6), p.1-4 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933 |
container_end_page | 4 |
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 53 |
creator | da Silva, Joao Rogerio Geraldo Peixoto de Faria, Jose Afonso, Marcio Matias Queiroz Pellegrino, Giancarlo |
description | Differential quadrature methods are devised to numerically solve ordinary and partial differential equations by approximating the derivatives of the unknown function at points of a cloud defined on the domain of interest as weighted sums of the values of such function at other points of the cloud. Local versions of this class of meshless methods restrict the points used in such expansion, by establishing suitable supporting regions. In this paper, we present the local differential quadrature method and we use it to solve a boundary problem in electromagnetism. In order to do this, we evaluate the numerical solutions of the Poisson equation on a 2-D domain. Furthermore, we propose an alternative definition of supporting region that has yielded better solutions than the conventional one. Root-mean-square errors for the approximations with both (alternative and conventional) definitions of local supports are obtained and their dependences with the density of nodes are studied. We find out that the best accuracy obtained with the alternative definition of the local support is due to the smaller condition numbers of the linear systems yielded. |
doi_str_mv | 10.1109/TMAG.2017.2666600 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7847424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7847424</ieee_id><sourcerecordid>1904836117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933</originalsourceid><addsrcrecordid>eNo9kNtKxDAQhoMouB4eQLwJeN0106RNcynreoD1hIqXJbYTN7I2aw4XvoTPbOqKw8Aww_fPDz8hR8CmAEydPt2cXU5LBnJa1rkY2yITUAIKxmq1TSaMQVMoUYtdshfCe15FBWxCvufGYBepM3ThOr2ij2m9dj7SmRuMfUteR-sGmjsukd577Gz4PRh6mz7Q21-NW6URC-P53tkQMjH_TBvt3WvUdsCevti4pOc2G3ocos3Ch6T77JA80huMS9cfkB2jVwEP_-Y-eb6YP82uisXd5fXsbFF0peKxMMwAlrWQTcVrEBzrRrJeVUbKV101KGtQYHTV52JdxWXNtBK85z30AhXn--Rk83ft3WfCENt3l_yQLVtQTDT5K8hMwYbqvAvBo2nX3n5o_9UCa8fY2zH2doy9_Ys9a443GouI_7xshBSl4D_xuX_9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904836117</pqid></control><display><type>article</type><title>Effect of Local Support Configuration on the Precision of Numerical Solutions of Poisson Equation Obtained With Differential Quadrature Method</title><source>IEEE Electronic Library (IEL) Journals</source><creator>da Silva, Joao Rogerio ; Geraldo Peixoto de Faria, Jose ; Afonso, Marcio Matias ; Queiroz Pellegrino, Giancarlo</creator><creatorcontrib>da Silva, Joao Rogerio ; Geraldo Peixoto de Faria, Jose ; Afonso, Marcio Matias ; Queiroz Pellegrino, Giancarlo</creatorcontrib><description>Differential quadrature methods are devised to numerically solve ordinary and partial differential equations by approximating the derivatives of the unknown function at points of a cloud defined on the domain of interest as weighted sums of the values of such function at other points of the cloud. Local versions of this class of meshless methods restrict the points used in such expansion, by establishing suitable supporting regions. In this paper, we present the local differential quadrature method and we use it to solve a boundary problem in electromagnetism. In order to do this, we evaluate the numerical solutions of the Poisson equation on a 2-D domain. Furthermore, we propose an alternative definition of supporting region that has yielded better solutions than the conventional one. Root-mean-square errors for the approximations with both (alternative and conventional) definitions of local supports are obtained and their dependences with the density of nodes are studied. We find out that the best accuracy obtained with the alternative definition of the local support is due to the smaller condition numbers of the linear systems yielded.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2017.2666600</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Boundary conditions ; Condition number ; Density ; Derivatives ; Electromagnetism ; Finite element method ; Linear systems ; local differential quadrature ; local supports ; Magnetism ; Mathematical model ; Meshless methods ; Numerical methods ; Numerical models ; numerical simulation ; Partial differential equations ; Poisson equation ; Poisson equations ; Root mean square ; Root-mean-square errors ; Sums</subject><ispartof>IEEE transactions on magnetics, 2017-06, Vol.53 (6), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933</citedby><cites>FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933</cites><orcidid>0000-0002-4575-5293 ; 0000-0001-5462-7018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7847424$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>da Silva, Joao Rogerio</creatorcontrib><creatorcontrib>Geraldo Peixoto de Faria, Jose</creatorcontrib><creatorcontrib>Afonso, Marcio Matias</creatorcontrib><creatorcontrib>Queiroz Pellegrino, Giancarlo</creatorcontrib><title>Effect of Local Support Configuration on the Precision of Numerical Solutions of Poisson Equation Obtained With Differential Quadrature Method</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Differential quadrature methods are devised to numerically solve ordinary and partial differential equations by approximating the derivatives of the unknown function at points of a cloud defined on the domain of interest as weighted sums of the values of such function at other points of the cloud. Local versions of this class of meshless methods restrict the points used in such expansion, by establishing suitable supporting regions. In this paper, we present the local differential quadrature method and we use it to solve a boundary problem in electromagnetism. In order to do this, we evaluate the numerical solutions of the Poisson equation on a 2-D domain. Furthermore, we propose an alternative definition of supporting region that has yielded better solutions than the conventional one. Root-mean-square errors for the approximations with both (alternative and conventional) definitions of local supports are obtained and their dependences with the density of nodes are studied. We find out that the best accuracy obtained with the alternative definition of the local support is due to the smaller condition numbers of the linear systems yielded.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Condition number</subject><subject>Density</subject><subject>Derivatives</subject><subject>Electromagnetism</subject><subject>Finite element method</subject><subject>Linear systems</subject><subject>local differential quadrature</subject><subject>local supports</subject><subject>Magnetism</subject><subject>Mathematical model</subject><subject>Meshless methods</subject><subject>Numerical methods</subject><subject>Numerical models</subject><subject>numerical simulation</subject><subject>Partial differential equations</subject><subject>Poisson equation</subject><subject>Poisson equations</subject><subject>Root mean square</subject><subject>Root-mean-square errors</subject><subject>Sums</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKxDAQhoMouB4eQLwJeN0106RNcynreoD1hIqXJbYTN7I2aw4XvoTPbOqKw8Aww_fPDz8hR8CmAEydPt2cXU5LBnJa1rkY2yITUAIKxmq1TSaMQVMoUYtdshfCe15FBWxCvufGYBepM3ThOr2ij2m9dj7SmRuMfUteR-sGmjsukd577Gz4PRh6mz7Q21-NW6URC-P53tkQMjH_TBvt3WvUdsCevti4pOc2G3ocos3Ch6T77JA80huMS9cfkB2jVwEP_-Y-eb6YP82uisXd5fXsbFF0peKxMMwAlrWQTcVrEBzrRrJeVUbKV101KGtQYHTV52JdxWXNtBK85z30AhXn--Rk83ft3WfCENt3l_yQLVtQTDT5K8hMwYbqvAvBo2nX3n5o_9UCa8fY2zH2doy9_Ys9a443GouI_7xshBSl4D_xuX_9</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>da Silva, Joao Rogerio</creator><creator>Geraldo Peixoto de Faria, Jose</creator><creator>Afonso, Marcio Matias</creator><creator>Queiroz Pellegrino, Giancarlo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4575-5293</orcidid><orcidid>https://orcid.org/0000-0001-5462-7018</orcidid></search><sort><creationdate>20170601</creationdate><title>Effect of Local Support Configuration on the Precision of Numerical Solutions of Poisson Equation Obtained With Differential Quadrature Method</title><author>da Silva, Joao Rogerio ; Geraldo Peixoto de Faria, Jose ; Afonso, Marcio Matias ; Queiroz Pellegrino, Giancarlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Condition number</topic><topic>Density</topic><topic>Derivatives</topic><topic>Electromagnetism</topic><topic>Finite element method</topic><topic>Linear systems</topic><topic>local differential quadrature</topic><topic>local supports</topic><topic>Magnetism</topic><topic>Mathematical model</topic><topic>Meshless methods</topic><topic>Numerical methods</topic><topic>Numerical models</topic><topic>numerical simulation</topic><topic>Partial differential equations</topic><topic>Poisson equation</topic><topic>Poisson equations</topic><topic>Root mean square</topic><topic>Root-mean-square errors</topic><topic>Sums</topic><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Joao Rogerio</creatorcontrib><creatorcontrib>Geraldo Peixoto de Faria, Jose</creatorcontrib><creatorcontrib>Afonso, Marcio Matias</creatorcontrib><creatorcontrib>Queiroz Pellegrino, Giancarlo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, Joao Rogerio</au><au>Geraldo Peixoto de Faria, Jose</au><au>Afonso, Marcio Matias</au><au>Queiroz Pellegrino, Giancarlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Local Support Configuration on the Precision of Numerical Solutions of Poisson Equation Obtained With Differential Quadrature Method</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>53</volume><issue>6</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Differential quadrature methods are devised to numerically solve ordinary and partial differential equations by approximating the derivatives of the unknown function at points of a cloud defined on the domain of interest as weighted sums of the values of such function at other points of the cloud. Local versions of this class of meshless methods restrict the points used in such expansion, by establishing suitable supporting regions. In this paper, we present the local differential quadrature method and we use it to solve a boundary problem in electromagnetism. In order to do this, we evaluate the numerical solutions of the Poisson equation on a 2-D domain. Furthermore, we propose an alternative definition of supporting region that has yielded better solutions than the conventional one. Root-mean-square errors for the approximations with both (alternative and conventional) definitions of local supports are obtained and their dependences with the density of nodes are studied. We find out that the best accuracy obtained with the alternative definition of the local support is due to the smaller condition numbers of the linear systems yielded.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2017.2666600</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4575-5293</orcidid><orcidid>https://orcid.org/0000-0001-5462-7018</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2017-06, Vol.53 (6), p.1-4 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_7847424 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Approximation Boundary conditions Condition number Density Derivatives Electromagnetism Finite element method Linear systems local differential quadrature local supports Magnetism Mathematical model Meshless methods Numerical methods Numerical models numerical simulation Partial differential equations Poisson equation Poisson equations Root mean square Root-mean-square errors Sums |
title | Effect of Local Support Configuration on the Precision of Numerical Solutions of Poisson Equation Obtained With Differential Quadrature Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Local%20Support%20Configuration%20on%20the%20Precision%20of%20Numerical%20Solutions%20of%20Poisson%20Equation%20Obtained%20With%20Differential%20Quadrature%20Method&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=da%20Silva,%20Joao%20Rogerio&rft.date=2017-06-01&rft.volume=53&rft.issue=6&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2017.2666600&rft_dat=%3Cproquest_ieee_%3E1904836117%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1904836117&rft_id=info:pmid/&rft_ieee_id=7847424&rfr_iscdi=true |