Loading…

Effect of Local Support Configuration on the Precision of Numerical Solutions of Poisson Equation Obtained With Differential Quadrature Method

Differential quadrature methods are devised to numerically solve ordinary and partial differential equations by approximating the derivatives of the unknown function at points of a cloud defined on the domain of interest as weighted sums of the values of such function at other points of the cloud. L...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2017-06, Vol.53 (6), p.1-4
Main Authors: da Silva, Joao Rogerio, Geraldo Peixoto de Faria, Jose, Afonso, Marcio Matias, Queiroz Pellegrino, Giancarlo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933
cites cdi_FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933
container_end_page 4
container_issue 6
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 53
creator da Silva, Joao Rogerio
Geraldo Peixoto de Faria, Jose
Afonso, Marcio Matias
Queiroz Pellegrino, Giancarlo
description Differential quadrature methods are devised to numerically solve ordinary and partial differential equations by approximating the derivatives of the unknown function at points of a cloud defined on the domain of interest as weighted sums of the values of such function at other points of the cloud. Local versions of this class of meshless methods restrict the points used in such expansion, by establishing suitable supporting regions. In this paper, we present the local differential quadrature method and we use it to solve a boundary problem in electromagnetism. In order to do this, we evaluate the numerical solutions of the Poisson equation on a 2-D domain. Furthermore, we propose an alternative definition of supporting region that has yielded better solutions than the conventional one. Root-mean-square errors for the approximations with both (alternative and conventional) definitions of local supports are obtained and their dependences with the density of nodes are studied. We find out that the best accuracy obtained with the alternative definition of the local support is due to the smaller condition numbers of the linear systems yielded.
doi_str_mv 10.1109/TMAG.2017.2666600
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7847424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7847424</ieee_id><sourcerecordid>1904836117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933</originalsourceid><addsrcrecordid>eNo9kNtKxDAQhoMouB4eQLwJeN0106RNcynreoD1hIqXJbYTN7I2aw4XvoTPbOqKw8Aww_fPDz8hR8CmAEydPt2cXU5LBnJa1rkY2yITUAIKxmq1TSaMQVMoUYtdshfCe15FBWxCvufGYBepM3ThOr2ij2m9dj7SmRuMfUteR-sGmjsukd577Gz4PRh6mz7Q21-NW6URC-P53tkQMjH_TBvt3WvUdsCevti4pOc2G3ocos3Ch6T77JA80huMS9cfkB2jVwEP_-Y-eb6YP82uisXd5fXsbFF0peKxMMwAlrWQTcVrEBzrRrJeVUbKV101KGtQYHTV52JdxWXNtBK85z30AhXn--Rk83ft3WfCENt3l_yQLVtQTDT5K8hMwYbqvAvBo2nX3n5o_9UCa8fY2zH2doy9_Ys9a443GouI_7xshBSl4D_xuX_9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904836117</pqid></control><display><type>article</type><title>Effect of Local Support Configuration on the Precision of Numerical Solutions of Poisson Equation Obtained With Differential Quadrature Method</title><source>IEEE Electronic Library (IEL) Journals</source><creator>da Silva, Joao Rogerio ; Geraldo Peixoto de Faria, Jose ; Afonso, Marcio Matias ; Queiroz Pellegrino, Giancarlo</creator><creatorcontrib>da Silva, Joao Rogerio ; Geraldo Peixoto de Faria, Jose ; Afonso, Marcio Matias ; Queiroz Pellegrino, Giancarlo</creatorcontrib><description>Differential quadrature methods are devised to numerically solve ordinary and partial differential equations by approximating the derivatives of the unknown function at points of a cloud defined on the domain of interest as weighted sums of the values of such function at other points of the cloud. Local versions of this class of meshless methods restrict the points used in such expansion, by establishing suitable supporting regions. In this paper, we present the local differential quadrature method and we use it to solve a boundary problem in electromagnetism. In order to do this, we evaluate the numerical solutions of the Poisson equation on a 2-D domain. Furthermore, we propose an alternative definition of supporting region that has yielded better solutions than the conventional one. Root-mean-square errors for the approximations with both (alternative and conventional) definitions of local supports are obtained and their dependences with the density of nodes are studied. We find out that the best accuracy obtained with the alternative definition of the local support is due to the smaller condition numbers of the linear systems yielded.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2017.2666600</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Boundary conditions ; Condition number ; Density ; Derivatives ; Electromagnetism ; Finite element method ; Linear systems ; local differential quadrature ; local supports ; Magnetism ; Mathematical model ; Meshless methods ; Numerical methods ; Numerical models ; numerical simulation ; Partial differential equations ; Poisson equation ; Poisson equations ; Root mean square ; Root-mean-square errors ; Sums</subject><ispartof>IEEE transactions on magnetics, 2017-06, Vol.53 (6), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933</citedby><cites>FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933</cites><orcidid>0000-0002-4575-5293 ; 0000-0001-5462-7018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7847424$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>da Silva, Joao Rogerio</creatorcontrib><creatorcontrib>Geraldo Peixoto de Faria, Jose</creatorcontrib><creatorcontrib>Afonso, Marcio Matias</creatorcontrib><creatorcontrib>Queiroz Pellegrino, Giancarlo</creatorcontrib><title>Effect of Local Support Configuration on the Precision of Numerical Solutions of Poisson Equation Obtained With Differential Quadrature Method</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Differential quadrature methods are devised to numerically solve ordinary and partial differential equations by approximating the derivatives of the unknown function at points of a cloud defined on the domain of interest as weighted sums of the values of such function at other points of the cloud. Local versions of this class of meshless methods restrict the points used in such expansion, by establishing suitable supporting regions. In this paper, we present the local differential quadrature method and we use it to solve a boundary problem in electromagnetism. In order to do this, we evaluate the numerical solutions of the Poisson equation on a 2-D domain. Furthermore, we propose an alternative definition of supporting region that has yielded better solutions than the conventional one. Root-mean-square errors for the approximations with both (alternative and conventional) definitions of local supports are obtained and their dependences with the density of nodes are studied. We find out that the best accuracy obtained with the alternative definition of the local support is due to the smaller condition numbers of the linear systems yielded.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Condition number</subject><subject>Density</subject><subject>Derivatives</subject><subject>Electromagnetism</subject><subject>Finite element method</subject><subject>Linear systems</subject><subject>local differential quadrature</subject><subject>local supports</subject><subject>Magnetism</subject><subject>Mathematical model</subject><subject>Meshless methods</subject><subject>Numerical methods</subject><subject>Numerical models</subject><subject>numerical simulation</subject><subject>Partial differential equations</subject><subject>Poisson equation</subject><subject>Poisson equations</subject><subject>Root mean square</subject><subject>Root-mean-square errors</subject><subject>Sums</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKxDAQhoMouB4eQLwJeN0106RNcynreoD1hIqXJbYTN7I2aw4XvoTPbOqKw8Aww_fPDz8hR8CmAEydPt2cXU5LBnJa1rkY2yITUAIKxmq1TSaMQVMoUYtdshfCe15FBWxCvufGYBepM3ThOr2ij2m9dj7SmRuMfUteR-sGmjsukd577Gz4PRh6mz7Q21-NW6URC-P53tkQMjH_TBvt3WvUdsCevti4pOc2G3ocos3Ch6T77JA80huMS9cfkB2jVwEP_-Y-eb6YP82uisXd5fXsbFF0peKxMMwAlrWQTcVrEBzrRrJeVUbKV101KGtQYHTV52JdxWXNtBK85z30AhXn--Rk83ft3WfCENt3l_yQLVtQTDT5K8hMwYbqvAvBo2nX3n5o_9UCa8fY2zH2doy9_Ys9a443GouI_7xshBSl4D_xuX_9</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>da Silva, Joao Rogerio</creator><creator>Geraldo Peixoto de Faria, Jose</creator><creator>Afonso, Marcio Matias</creator><creator>Queiroz Pellegrino, Giancarlo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4575-5293</orcidid><orcidid>https://orcid.org/0000-0001-5462-7018</orcidid></search><sort><creationdate>20170601</creationdate><title>Effect of Local Support Configuration on the Precision of Numerical Solutions of Poisson Equation Obtained With Differential Quadrature Method</title><author>da Silva, Joao Rogerio ; Geraldo Peixoto de Faria, Jose ; Afonso, Marcio Matias ; Queiroz Pellegrino, Giancarlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Condition number</topic><topic>Density</topic><topic>Derivatives</topic><topic>Electromagnetism</topic><topic>Finite element method</topic><topic>Linear systems</topic><topic>local differential quadrature</topic><topic>local supports</topic><topic>Magnetism</topic><topic>Mathematical model</topic><topic>Meshless methods</topic><topic>Numerical methods</topic><topic>Numerical models</topic><topic>numerical simulation</topic><topic>Partial differential equations</topic><topic>Poisson equation</topic><topic>Poisson equations</topic><topic>Root mean square</topic><topic>Root-mean-square errors</topic><topic>Sums</topic><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Joao Rogerio</creatorcontrib><creatorcontrib>Geraldo Peixoto de Faria, Jose</creatorcontrib><creatorcontrib>Afonso, Marcio Matias</creatorcontrib><creatorcontrib>Queiroz Pellegrino, Giancarlo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, Joao Rogerio</au><au>Geraldo Peixoto de Faria, Jose</au><au>Afonso, Marcio Matias</au><au>Queiroz Pellegrino, Giancarlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Local Support Configuration on the Precision of Numerical Solutions of Poisson Equation Obtained With Differential Quadrature Method</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>53</volume><issue>6</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Differential quadrature methods are devised to numerically solve ordinary and partial differential equations by approximating the derivatives of the unknown function at points of a cloud defined on the domain of interest as weighted sums of the values of such function at other points of the cloud. Local versions of this class of meshless methods restrict the points used in such expansion, by establishing suitable supporting regions. In this paper, we present the local differential quadrature method and we use it to solve a boundary problem in electromagnetism. In order to do this, we evaluate the numerical solutions of the Poisson equation on a 2-D domain. Furthermore, we propose an alternative definition of supporting region that has yielded better solutions than the conventional one. Root-mean-square errors for the approximations with both (alternative and conventional) definitions of local supports are obtained and their dependences with the density of nodes are studied. We find out that the best accuracy obtained with the alternative definition of the local support is due to the smaller condition numbers of the linear systems yielded.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2017.2666600</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4575-5293</orcidid><orcidid>https://orcid.org/0000-0001-5462-7018</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2017-06, Vol.53 (6), p.1-4
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_7847424
source IEEE Electronic Library (IEL) Journals
subjects Approximation
Boundary conditions
Condition number
Density
Derivatives
Electromagnetism
Finite element method
Linear systems
local differential quadrature
local supports
Magnetism
Mathematical model
Meshless methods
Numerical methods
Numerical models
numerical simulation
Partial differential equations
Poisson equation
Poisson equations
Root mean square
Root-mean-square errors
Sums
title Effect of Local Support Configuration on the Precision of Numerical Solutions of Poisson Equation Obtained With Differential Quadrature Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Local%20Support%20Configuration%20on%20the%20Precision%20of%20Numerical%20Solutions%20of%20Poisson%20Equation%20Obtained%20With%20Differential%20Quadrature%20Method&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=da%20Silva,%20Joao%20Rogerio&rft.date=2017-06-01&rft.volume=53&rft.issue=6&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2017.2666600&rft_dat=%3Cproquest_ieee_%3E1904836117%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-f0f1e26478536143e6870d95f77ba58e76191fa5dddd0c53760a943d3d1d4e933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1904836117&rft_id=info:pmid/&rft_ieee_id=7847424&rfr_iscdi=true