Loading…

A generalized ℓp-ℓq norm minimization approach for distributed estimation in sensor networks

A generalized ℓ p -ℓ q norm minimization approach for in-network distributed estimation is proposed. Different from the existing techniques which are assuming that all the nodes are affected by the same noise model, either Gaussian or non-Gaussian. We consider a general and practical scenario, the s...

Full description

Saved in:
Bibliographic Details
Main Authors: Fuxi Wen, Zhongmin Wang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1410
container_issue
container_start_page 1407
container_title
container_volume
creator Fuxi Wen
Zhongmin Wang
description A generalized ℓ p -ℓ q norm minimization approach for in-network distributed estimation is proposed. Different from the existing techniques which are assuming that all the nodes are affected by the same noise model, either Gaussian or non-Gaussian. We consider a general and practical scenario, the spatially distributed nodes are affected by different noise models. To achieve robust estimation performance in different noise environments, each node solves a specific ℓ p -norm minimization problem corresponding to the noise model. Meanwhile, the ℓ q -norm penalty is imposed on the cost function to exploit prior information of the system, such as sparsity.
doi_str_mv 10.1109/TENCON.2016.7848246
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7848246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7848246</ieee_id><sourcerecordid>7848246</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3792adf9e7c0fb248fe1e8b5772eb93cfae7bbd4699c940d625849e499da27d33</originalsourceid><addsrcrecordid>eNotUEtOwzAUNEhIlNITdOMLJNiOE-ctq6h8pKrdZF-c-BkMjRPsIETX3IAbchIitbOY2cyMRkPIkrOUcwZ39Xpb7bapYLxIVSlLIYsLcsNzBkzkoOCSzATPIclkzq7JIsY3NqFggpVqRp5X9AU9Bn1wRzT07-d3SCb6oL4PHe2cd5076tH1nuphCL1uX6ntAzUujsE1n-MUwji67uRxnkb0cTJ4HL_68B5vyZXVh4iLs85Jfb-uq8dks3t4qlabxAEbk0yB0MYCqpbZRsjSIseyyZUS2EDWWo2qaYwsAFqQzBQiLyWgBDBaKJNlc7I81TpE3A9hGhS-9-c_sn_60Vjt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A generalized ℓp-ℓq norm minimization approach for distributed estimation in sensor networks</title><source>IEEE Xplore All Conference Series</source><creator>Fuxi Wen ; Zhongmin Wang</creator><creatorcontrib>Fuxi Wen ; Zhongmin Wang</creatorcontrib><description>A generalized ℓ p -ℓ q norm minimization approach for in-network distributed estimation is proposed. Different from the existing techniques which are assuming that all the nodes are affected by the same noise model, either Gaussian or non-Gaussian. We consider a general and practical scenario, the spatially distributed nodes are affected by different noise models. To achieve robust estimation performance in different noise environments, each node solves a specific ℓ p -norm minimization problem corresponding to the noise model. Meanwhile, the ℓ q -norm penalty is imposed on the cost function to exploit prior information of the system, such as sparsity.</description><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 1509025979</identifier><identifier>EISBN: 9781509025978</identifier><identifier>DOI: 10.1109/TENCON.2016.7848246</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cost function ; distributed estimation ; Estimation ; Indexes ; Kernel ; Minimization ; regularization ; Robustness ; sensor networks ; Signal to noise ratio ; uniformed framework ; ℓ p -norm minimization</subject><ispartof>2016 IEEE Region 10 Conference (TENCON), 2016, p.1407-1410</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7848246$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7848246$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fuxi Wen</creatorcontrib><creatorcontrib>Zhongmin Wang</creatorcontrib><title>A generalized ℓp-ℓq norm minimization approach for distributed estimation in sensor networks</title><title>2016 IEEE Region 10 Conference (TENCON)</title><addtitle>TENCON</addtitle><description>A generalized ℓ p -ℓ q norm minimization approach for in-network distributed estimation is proposed. Different from the existing techniques which are assuming that all the nodes are affected by the same noise model, either Gaussian or non-Gaussian. We consider a general and practical scenario, the spatially distributed nodes are affected by different noise models. To achieve robust estimation performance in different noise environments, each node solves a specific ℓ p -norm minimization problem corresponding to the noise model. Meanwhile, the ℓ q -norm penalty is imposed on the cost function to exploit prior information of the system, such as sparsity.</description><subject>Cost function</subject><subject>distributed estimation</subject><subject>Estimation</subject><subject>Indexes</subject><subject>Kernel</subject><subject>Minimization</subject><subject>regularization</subject><subject>Robustness</subject><subject>sensor networks</subject><subject>Signal to noise ratio</subject><subject>uniformed framework</subject><subject>ℓ p -norm minimization</subject><issn>2159-3450</issn><isbn>1509025979</isbn><isbn>9781509025978</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUEtOwzAUNEhIlNITdOMLJNiOE-ctq6h8pKrdZF-c-BkMjRPsIETX3IAbchIitbOY2cyMRkPIkrOUcwZ39Xpb7bapYLxIVSlLIYsLcsNzBkzkoOCSzATPIclkzq7JIsY3NqFggpVqRp5X9AU9Bn1wRzT07-d3SCb6oL4PHe2cd5076tH1nuphCL1uX6ntAzUujsE1n-MUwji67uRxnkb0cTJ4HL_68B5vyZXVh4iLs85Jfb-uq8dks3t4qlabxAEbk0yB0MYCqpbZRsjSIseyyZUS2EDWWo2qaYwsAFqQzBQiLyWgBDBaKJNlc7I81TpE3A9hGhS-9-c_sn_60Vjt</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Fuxi Wen</creator><creator>Zhongmin Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201611</creationdate><title>A generalized ℓp-ℓq norm minimization approach for distributed estimation in sensor networks</title><author>Fuxi Wen ; Zhongmin Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3792adf9e7c0fb248fe1e8b5772eb93cfae7bbd4699c940d625849e499da27d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cost function</topic><topic>distributed estimation</topic><topic>Estimation</topic><topic>Indexes</topic><topic>Kernel</topic><topic>Minimization</topic><topic>regularization</topic><topic>Robustness</topic><topic>sensor networks</topic><topic>Signal to noise ratio</topic><topic>uniformed framework</topic><topic>ℓ p -norm minimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Fuxi Wen</creatorcontrib><creatorcontrib>Zhongmin Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fuxi Wen</au><au>Zhongmin Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A generalized ℓp-ℓq norm minimization approach for distributed estimation in sensor networks</atitle><btitle>2016 IEEE Region 10 Conference (TENCON)</btitle><stitle>TENCON</stitle><date>2016-11</date><risdate>2016</risdate><spage>1407</spage><epage>1410</epage><pages>1407-1410</pages><eissn>2159-3450</eissn><eisbn>1509025979</eisbn><eisbn>9781509025978</eisbn><abstract>A generalized ℓ p -ℓ q norm minimization approach for in-network distributed estimation is proposed. Different from the existing techniques which are assuming that all the nodes are affected by the same noise model, either Gaussian or non-Gaussian. We consider a general and practical scenario, the spatially distributed nodes are affected by different noise models. To achieve robust estimation performance in different noise environments, each node solves a specific ℓ p -norm minimization problem corresponding to the noise model. Meanwhile, the ℓ q -norm penalty is imposed on the cost function to exploit prior information of the system, such as sparsity.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2016.7848246</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2159-3450
ispartof 2016 IEEE Region 10 Conference (TENCON), 2016, p.1407-1410
issn 2159-3450
language eng
recordid cdi_ieee_primary_7848246
source IEEE Xplore All Conference Series
subjects Cost function
distributed estimation
Estimation
Indexes
Kernel
Minimization
regularization
Robustness
sensor networks
Signal to noise ratio
uniformed framework
ℓ p -norm minimization
title A generalized ℓp-ℓq norm minimization approach for distributed estimation in sensor networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20generalized%20%E2%84%93p-%E2%84%93q%20norm%20minimization%20approach%20for%20distributed%20estimation%20in%20sensor%20networks&rft.btitle=2016%20IEEE%20Region%2010%20Conference%20(TENCON)&rft.au=Fuxi%20Wen&rft.date=2016-11&rft.spage=1407&rft.epage=1410&rft.pages=1407-1410&rft.eissn=2159-3450&rft_id=info:doi/10.1109/TENCON.2016.7848246&rft.eisbn=1509025979&rft.eisbn_list=9781509025978&rft_dat=%3Cieee_CHZPO%3E7848246%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-3792adf9e7c0fb248fe1e8b5772eb93cfae7bbd4699c940d625849e499da27d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7848246&rfr_iscdi=true