Loading…

Stochastic Runtime Analysis of the Cross-Entropy Algorithm

This paper analyzes the stochastic runtime of the cross-entropy (CE) algorithm for the well-studied standard problems ONEMAX and LEADINGONES. We prove that the total number of solutions the algorithm needs to evaluate before reaching the optimal solution (i.e., its runtime) is bounded by a polynomia...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation 2017-08, Vol.21 (4), p.616-628
Main Authors: Zijun Wu, Kolonko, Michael, Mohring, Rolf H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533
cites cdi_FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533
container_end_page 628
container_issue 4
container_start_page 616
container_title IEEE transactions on evolutionary computation
container_volume 21
creator Zijun Wu
Kolonko, Michael
Mohring, Rolf H.
description This paper analyzes the stochastic runtime of the cross-entropy (CE) algorithm for the well-studied standard problems ONEMAX and LEADINGONES. We prove that the total number of solutions the algorithm needs to evaluate before reaching the optimal solution (i.e., its runtime) is bounded by a polynomial Q(n) in the problem size n with a probability growing exponentially to 1 with n if the parameters of the algorithm are adapted to n in a reasonable way. Our polynomial bound Q(n) for ONEMAX outperforms the well-known runtime bound of the 1-ANT algorithm, a particular ant colony optimization algorithm. Our adaptation of the parameters of the CE algorithm balances the number of iterations needed and the size of the samples drawn in each iteration, resulting in an increased efficiency. For the LEADINGONES problem, we improve the runtime of the algorithm by bounding the sampling probabilities away from 0 and 1. The resulting runtime outperforms the known stochastic runtime for a univariate marginal distribution algorithm, and is very close to the known expected runtime of variants of max-min ant systems. Bounding the sampling probabilities allows the CE algorithm to explore the search space even for test functions with a very rugged landscape as the LEADINGONES function.
doi_str_mv 10.1109/TEVC.2017.2667713
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7851024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7851024</ieee_id><sourcerecordid>1923735875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwMuJ6alzeZJO7KUD-gIGgVdyEzk9gpbVOTdNF_7wwtrt5b3Hs5HEJugU4AqHpYzL6qCaMgJqwshQA8IyNQBeSUsvK8_6lUuRDy-5JcxbiiFAoOakQeP5Jvliamrsne99vUbWw23Zr1IXYx8y5LS5tVwceYz7Yp-N0hm65_fOjScnNNLpxZR3tzumPy-TRbVC_5_O35tZrO84YpTHmtDJSuRZStQlGX1ijDkbpGQo8mEZjgVtY11I1qa2mxRFsAax0rHGs54pjcH3d3wf_ubUx65fehZ4waFEOBXArep-CYagbaYJ3ehW5jwkED1YMiPSjSgyJ9UtR37o6dzlr7nxeS92QF_gEJx2GS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923735875</pqid></control><display><type>article</type><title>Stochastic Runtime Analysis of the Cross-Entropy Algorithm</title><source>IEEE Xplore All Conference Series</source><creator>Zijun Wu ; Kolonko, Michael ; Mohring, Rolf H.</creator><creatorcontrib>Zijun Wu ; Kolonko, Michael ; Mohring, Rolf H.</creatorcontrib><description>This paper analyzes the stochastic runtime of the cross-entropy (CE) algorithm for the well-studied standard problems ONEMAX and LEADINGONES. We prove that the total number of solutions the algorithm needs to evaluate before reaching the optimal solution (i.e., its runtime) is bounded by a polynomial Q(n) in the problem size n with a probability growing exponentially to 1 with n if the parameters of the algorithm are adapted to n in a reasonable way. Our polynomial bound Q(n) for ONEMAX outperforms the well-known runtime bound of the 1-ANT algorithm, a particular ant colony optimization algorithm. Our adaptation of the parameters of the CE algorithm balances the number of iterations needed and the size of the samples drawn in each iteration, resulting in an increased efficiency. For the LEADINGONES problem, we improve the runtime of the algorithm by bounding the sampling probabilities away from 0 and 1. The resulting runtime outperforms the known stochastic runtime for a univariate marginal distribution algorithm, and is very close to the known expected runtime of variants of max-min ant systems. Bounding the sampling probabilities allows the CE algorithm to explore the search space even for test functions with a very rugged landscape as the LEADINGONES function.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2017.2667713</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1-ANT algorithm ; Algorithm design and analysis ; Algorithms ; analysis of randomized algorithms ; Ant colony optimization ; Complexity theory ; cross-entropy (CE) algorithm ; Entropy (Information theory) ; Evolutionary computation ; Functions (mathematics) ; Iterative methods ; Mathematical analysis ; Mathematical model ; Optimization ; Probability theory ; Randomness ; Runtime ; Sampling ; stochastic complexity ; Stochastic processes ; stochastic runtime analysis of evolutionary algorithms (EAs)</subject><ispartof>IEEE transactions on evolutionary computation, 2017-08, Vol.21 (4), p.616-628</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533</citedby><cites>FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533</cites><orcidid>0000-0002-8662-9816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7851024$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54533,54774,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7851024$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zijun Wu</creatorcontrib><creatorcontrib>Kolonko, Michael</creatorcontrib><creatorcontrib>Mohring, Rolf H.</creatorcontrib><title>Stochastic Runtime Analysis of the Cross-Entropy Algorithm</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>This paper analyzes the stochastic runtime of the cross-entropy (CE) algorithm for the well-studied standard problems ONEMAX and LEADINGONES. We prove that the total number of solutions the algorithm needs to evaluate before reaching the optimal solution (i.e., its runtime) is bounded by a polynomial Q(n) in the problem size n with a probability growing exponentially to 1 with n if the parameters of the algorithm are adapted to n in a reasonable way. Our polynomial bound Q(n) for ONEMAX outperforms the well-known runtime bound of the 1-ANT algorithm, a particular ant colony optimization algorithm. Our adaptation of the parameters of the CE algorithm balances the number of iterations needed and the size of the samples drawn in each iteration, resulting in an increased efficiency. For the LEADINGONES problem, we improve the runtime of the algorithm by bounding the sampling probabilities away from 0 and 1. The resulting runtime outperforms the known stochastic runtime for a univariate marginal distribution algorithm, and is very close to the known expected runtime of variants of max-min ant systems. Bounding the sampling probabilities allows the CE algorithm to explore the search space even for test functions with a very rugged landscape as the LEADINGONES function.</description><subject>1-ANT algorithm</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>analysis of randomized algorithms</subject><subject>Ant colony optimization</subject><subject>Complexity theory</subject><subject>cross-entropy (CE) algorithm</subject><subject>Entropy (Information theory)</subject><subject>Evolutionary computation</subject><subject>Functions (mathematics)</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Probability theory</subject><subject>Randomness</subject><subject>Runtime</subject><subject>Sampling</subject><subject>stochastic complexity</subject><subject>Stochastic processes</subject><subject>stochastic runtime analysis of evolutionary algorithms (EAs)</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKs_QNwMuJ6alzeZJO7KUD-gIGgVdyEzk9gpbVOTdNF_7wwtrt5b3Hs5HEJugU4AqHpYzL6qCaMgJqwshQA8IyNQBeSUsvK8_6lUuRDy-5JcxbiiFAoOakQeP5Jvliamrsne99vUbWw23Zr1IXYx8y5LS5tVwceYz7Yp-N0hm65_fOjScnNNLpxZR3tzumPy-TRbVC_5_O35tZrO84YpTHmtDJSuRZStQlGX1ijDkbpGQo8mEZjgVtY11I1qa2mxRFsAax0rHGs54pjcH3d3wf_ubUx65fehZ4waFEOBXArep-CYagbaYJ3ehW5jwkED1YMiPSjSgyJ9UtR37o6dzlr7nxeS92QF_gEJx2GS</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Zijun Wu</creator><creator>Kolonko, Michael</creator><creator>Mohring, Rolf H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8662-9816</orcidid></search><sort><creationdate>20170801</creationdate><title>Stochastic Runtime Analysis of the Cross-Entropy Algorithm</title><author>Zijun Wu ; Kolonko, Michael ; Mohring, Rolf H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>1-ANT algorithm</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>analysis of randomized algorithms</topic><topic>Ant colony optimization</topic><topic>Complexity theory</topic><topic>cross-entropy (CE) algorithm</topic><topic>Entropy (Information theory)</topic><topic>Evolutionary computation</topic><topic>Functions (mathematics)</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Probability theory</topic><topic>Randomness</topic><topic>Runtime</topic><topic>Sampling</topic><topic>stochastic complexity</topic><topic>Stochastic processes</topic><topic>stochastic runtime analysis of evolutionary algorithms (EAs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zijun Wu</creatorcontrib><creatorcontrib>Kolonko, Michael</creatorcontrib><creatorcontrib>Mohring, Rolf H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zijun Wu</au><au>Kolonko, Michael</au><au>Mohring, Rolf H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Runtime Analysis of the Cross-Entropy Algorithm</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>21</volume><issue>4</issue><spage>616</spage><epage>628</epage><pages>616-628</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>This paper analyzes the stochastic runtime of the cross-entropy (CE) algorithm for the well-studied standard problems ONEMAX and LEADINGONES. We prove that the total number of solutions the algorithm needs to evaluate before reaching the optimal solution (i.e., its runtime) is bounded by a polynomial Q(n) in the problem size n with a probability growing exponentially to 1 with n if the parameters of the algorithm are adapted to n in a reasonable way. Our polynomial bound Q(n) for ONEMAX outperforms the well-known runtime bound of the 1-ANT algorithm, a particular ant colony optimization algorithm. Our adaptation of the parameters of the CE algorithm balances the number of iterations needed and the size of the samples drawn in each iteration, resulting in an increased efficiency. For the LEADINGONES problem, we improve the runtime of the algorithm by bounding the sampling probabilities away from 0 and 1. The resulting runtime outperforms the known stochastic runtime for a univariate marginal distribution algorithm, and is very close to the known expected runtime of variants of max-min ant systems. Bounding the sampling probabilities allows the CE algorithm to explore the search space even for test functions with a very rugged landscape as the LEADINGONES function.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2017.2667713</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8662-9816</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2017-08, Vol.21 (4), p.616-628
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_7851024
source IEEE Xplore All Conference Series
subjects 1-ANT algorithm
Algorithm design and analysis
Algorithms
analysis of randomized algorithms
Ant colony optimization
Complexity theory
cross-entropy (CE) algorithm
Entropy (Information theory)
Evolutionary computation
Functions (mathematics)
Iterative methods
Mathematical analysis
Mathematical model
Optimization
Probability theory
Randomness
Runtime
Sampling
stochastic complexity
Stochastic processes
stochastic runtime analysis of evolutionary algorithms (EAs)
title Stochastic Runtime Analysis of the Cross-Entropy Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Runtime%20Analysis%20of%20the%20Cross-Entropy%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Zijun%20Wu&rft.date=2017-08-01&rft.volume=21&rft.issue=4&rft.spage=616&rft.epage=628&rft.pages=616-628&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2017.2667713&rft_dat=%3Cproquest_CHZPO%3E1923735875%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1923735875&rft_id=info:pmid/&rft_ieee_id=7851024&rfr_iscdi=true