Loading…
Stochastic Runtime Analysis of the Cross-Entropy Algorithm
This paper analyzes the stochastic runtime of the cross-entropy (CE) algorithm for the well-studied standard problems ONEMAX and LEADINGONES. We prove that the total number of solutions the algorithm needs to evaluate before reaching the optimal solution (i.e., its runtime) is bounded by a polynomia...
Saved in:
Published in: | IEEE transactions on evolutionary computation 2017-08, Vol.21 (4), p.616-628 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533 |
container_end_page | 628 |
container_issue | 4 |
container_start_page | 616 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 21 |
creator | Zijun Wu Kolonko, Michael Mohring, Rolf H. |
description | This paper analyzes the stochastic runtime of the cross-entropy (CE) algorithm for the well-studied standard problems ONEMAX and LEADINGONES. We prove that the total number of solutions the algorithm needs to evaluate before reaching the optimal solution (i.e., its runtime) is bounded by a polynomial Q(n) in the problem size n with a probability growing exponentially to 1 with n if the parameters of the algorithm are adapted to n in a reasonable way. Our polynomial bound Q(n) for ONEMAX outperforms the well-known runtime bound of the 1-ANT algorithm, a particular ant colony optimization algorithm. Our adaptation of the parameters of the CE algorithm balances the number of iterations needed and the size of the samples drawn in each iteration, resulting in an increased efficiency. For the LEADINGONES problem, we improve the runtime of the algorithm by bounding the sampling probabilities away from 0 and 1. The resulting runtime outperforms the known stochastic runtime for a univariate marginal distribution algorithm, and is very close to the known expected runtime of variants of max-min ant systems. Bounding the sampling probabilities allows the CE algorithm to explore the search space even for test functions with a very rugged landscape as the LEADINGONES function. |
doi_str_mv | 10.1109/TEVC.2017.2667713 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7851024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7851024</ieee_id><sourcerecordid>1923735875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwMuJ6alzeZJO7KUD-gIGgVdyEzk9gpbVOTdNF_7wwtrt5b3Hs5HEJugU4AqHpYzL6qCaMgJqwshQA8IyNQBeSUsvK8_6lUuRDy-5JcxbiiFAoOakQeP5Jvliamrsne99vUbWw23Zr1IXYx8y5LS5tVwceYz7Yp-N0hm65_fOjScnNNLpxZR3tzumPy-TRbVC_5_O35tZrO84YpTHmtDJSuRZStQlGX1ijDkbpGQo8mEZjgVtY11I1qa2mxRFsAax0rHGs54pjcH3d3wf_ubUx65fehZ4waFEOBXArep-CYagbaYJ3ehW5jwkED1YMiPSjSgyJ9UtR37o6dzlr7nxeS92QF_gEJx2GS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923735875</pqid></control><display><type>article</type><title>Stochastic Runtime Analysis of the Cross-Entropy Algorithm</title><source>IEEE Xplore All Conference Series</source><creator>Zijun Wu ; Kolonko, Michael ; Mohring, Rolf H.</creator><creatorcontrib>Zijun Wu ; Kolonko, Michael ; Mohring, Rolf H.</creatorcontrib><description>This paper analyzes the stochastic runtime of the cross-entropy (CE) algorithm for the well-studied standard problems ONEMAX and LEADINGONES. We prove that the total number of solutions the algorithm needs to evaluate before reaching the optimal solution (i.e., its runtime) is bounded by a polynomial Q(n) in the problem size n with a probability growing exponentially to 1 with n if the parameters of the algorithm are adapted to n in a reasonable way. Our polynomial bound Q(n) for ONEMAX outperforms the well-known runtime bound of the 1-ANT algorithm, a particular ant colony optimization algorithm. Our adaptation of the parameters of the CE algorithm balances the number of iterations needed and the size of the samples drawn in each iteration, resulting in an increased efficiency. For the LEADINGONES problem, we improve the runtime of the algorithm by bounding the sampling probabilities away from 0 and 1. The resulting runtime outperforms the known stochastic runtime for a univariate marginal distribution algorithm, and is very close to the known expected runtime of variants of max-min ant systems. Bounding the sampling probabilities allows the CE algorithm to explore the search space even for test functions with a very rugged landscape as the LEADINGONES function.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2017.2667713</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1-ANT algorithm ; Algorithm design and analysis ; Algorithms ; analysis of randomized algorithms ; Ant colony optimization ; Complexity theory ; cross-entropy (CE) algorithm ; Entropy (Information theory) ; Evolutionary computation ; Functions (mathematics) ; Iterative methods ; Mathematical analysis ; Mathematical model ; Optimization ; Probability theory ; Randomness ; Runtime ; Sampling ; stochastic complexity ; Stochastic processes ; stochastic runtime analysis of evolutionary algorithms (EAs)</subject><ispartof>IEEE transactions on evolutionary computation, 2017-08, Vol.21 (4), p.616-628</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533</citedby><cites>FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533</cites><orcidid>0000-0002-8662-9816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7851024$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54533,54774,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7851024$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zijun Wu</creatorcontrib><creatorcontrib>Kolonko, Michael</creatorcontrib><creatorcontrib>Mohring, Rolf H.</creatorcontrib><title>Stochastic Runtime Analysis of the Cross-Entropy Algorithm</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>This paper analyzes the stochastic runtime of the cross-entropy (CE) algorithm for the well-studied standard problems ONEMAX and LEADINGONES. We prove that the total number of solutions the algorithm needs to evaluate before reaching the optimal solution (i.e., its runtime) is bounded by a polynomial Q(n) in the problem size n with a probability growing exponentially to 1 with n if the parameters of the algorithm are adapted to n in a reasonable way. Our polynomial bound Q(n) for ONEMAX outperforms the well-known runtime bound of the 1-ANT algorithm, a particular ant colony optimization algorithm. Our adaptation of the parameters of the CE algorithm balances the number of iterations needed and the size of the samples drawn in each iteration, resulting in an increased efficiency. For the LEADINGONES problem, we improve the runtime of the algorithm by bounding the sampling probabilities away from 0 and 1. The resulting runtime outperforms the known stochastic runtime for a univariate marginal distribution algorithm, and is very close to the known expected runtime of variants of max-min ant systems. Bounding the sampling probabilities allows the CE algorithm to explore the search space even for test functions with a very rugged landscape as the LEADINGONES function.</description><subject>1-ANT algorithm</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>analysis of randomized algorithms</subject><subject>Ant colony optimization</subject><subject>Complexity theory</subject><subject>cross-entropy (CE) algorithm</subject><subject>Entropy (Information theory)</subject><subject>Evolutionary computation</subject><subject>Functions (mathematics)</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Probability theory</subject><subject>Randomness</subject><subject>Runtime</subject><subject>Sampling</subject><subject>stochastic complexity</subject><subject>Stochastic processes</subject><subject>stochastic runtime analysis of evolutionary algorithms (EAs)</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKs_QNwMuJ6alzeZJO7KUD-gIGgVdyEzk9gpbVOTdNF_7wwtrt5b3Hs5HEJugU4AqHpYzL6qCaMgJqwshQA8IyNQBeSUsvK8_6lUuRDy-5JcxbiiFAoOakQeP5Jvliamrsne99vUbWw23Zr1IXYx8y5LS5tVwceYz7Yp-N0hm65_fOjScnNNLpxZR3tzumPy-TRbVC_5_O35tZrO84YpTHmtDJSuRZStQlGX1ijDkbpGQo8mEZjgVtY11I1qa2mxRFsAax0rHGs54pjcH3d3wf_ubUx65fehZ4waFEOBXArep-CYagbaYJ3ehW5jwkED1YMiPSjSgyJ9UtR37o6dzlr7nxeS92QF_gEJx2GS</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Zijun Wu</creator><creator>Kolonko, Michael</creator><creator>Mohring, Rolf H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8662-9816</orcidid></search><sort><creationdate>20170801</creationdate><title>Stochastic Runtime Analysis of the Cross-Entropy Algorithm</title><author>Zijun Wu ; Kolonko, Michael ; Mohring, Rolf H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>1-ANT algorithm</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>analysis of randomized algorithms</topic><topic>Ant colony optimization</topic><topic>Complexity theory</topic><topic>cross-entropy (CE) algorithm</topic><topic>Entropy (Information theory)</topic><topic>Evolutionary computation</topic><topic>Functions (mathematics)</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Probability theory</topic><topic>Randomness</topic><topic>Runtime</topic><topic>Sampling</topic><topic>stochastic complexity</topic><topic>Stochastic processes</topic><topic>stochastic runtime analysis of evolutionary algorithms (EAs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zijun Wu</creatorcontrib><creatorcontrib>Kolonko, Michael</creatorcontrib><creatorcontrib>Mohring, Rolf H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zijun Wu</au><au>Kolonko, Michael</au><au>Mohring, Rolf H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Runtime Analysis of the Cross-Entropy Algorithm</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>21</volume><issue>4</issue><spage>616</spage><epage>628</epage><pages>616-628</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>This paper analyzes the stochastic runtime of the cross-entropy (CE) algorithm for the well-studied standard problems ONEMAX and LEADINGONES. We prove that the total number of solutions the algorithm needs to evaluate before reaching the optimal solution (i.e., its runtime) is bounded by a polynomial Q(n) in the problem size n with a probability growing exponentially to 1 with n if the parameters of the algorithm are adapted to n in a reasonable way. Our polynomial bound Q(n) for ONEMAX outperforms the well-known runtime bound of the 1-ANT algorithm, a particular ant colony optimization algorithm. Our adaptation of the parameters of the CE algorithm balances the number of iterations needed and the size of the samples drawn in each iteration, resulting in an increased efficiency. For the LEADINGONES problem, we improve the runtime of the algorithm by bounding the sampling probabilities away from 0 and 1. The resulting runtime outperforms the known stochastic runtime for a univariate marginal distribution algorithm, and is very close to the known expected runtime of variants of max-min ant systems. Bounding the sampling probabilities allows the CE algorithm to explore the search space even for test functions with a very rugged landscape as the LEADINGONES function.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2017.2667713</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8662-9816</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2017-08, Vol.21 (4), p.616-628 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_7851024 |
source | IEEE Xplore All Conference Series |
subjects | 1-ANT algorithm Algorithm design and analysis Algorithms analysis of randomized algorithms Ant colony optimization Complexity theory cross-entropy (CE) algorithm Entropy (Information theory) Evolutionary computation Functions (mathematics) Iterative methods Mathematical analysis Mathematical model Optimization Probability theory Randomness Runtime Sampling stochastic complexity Stochastic processes stochastic runtime analysis of evolutionary algorithms (EAs) |
title | Stochastic Runtime Analysis of the Cross-Entropy Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Runtime%20Analysis%20of%20the%20Cross-Entropy%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Zijun%20Wu&rft.date=2017-08-01&rft.volume=21&rft.issue=4&rft.spage=616&rft.epage=628&rft.pages=616-628&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2017.2667713&rft_dat=%3Cproquest_CHZPO%3E1923735875%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-b9a16fd338d937b6ea9a530fc81026831275e8bb1bc9db8e363e412df24f2d533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1923735875&rft_id=info:pmid/&rft_ieee_id=7851024&rfr_iscdi=true |