Loading…
A Time-Series Approach to Estimating Soil Moisture From Vegetated Surfaces Using L-Band Radar Backscatter
Many previous studies have shown the sensitivity of radar backscatter to surface soil moisture content, particularly at L-band. Moreover, the estimation of soil moisture from radar for bare soil surfaces is well-documented, but estimation underneath a vegetation canopy remains unsolved. Vegetation s...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2017-06, Vol.55 (6), p.3186-3193 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-8440570060053e406d8cd0d37d84cb9bc96a4b06509c56aa7a39883fa5a0c0903 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-8440570060053e406d8cd0d37d84cb9bc96a4b06509c56aa7a39883fa5a0c0903 |
container_end_page | 3193 |
container_issue | 6 |
container_start_page | 3186 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 55 |
creator | Ouellette, Jeffrey D. Johnson, Joel T. Balenzano, Anna Mattia, Francesco Satalino, Giuseppe Seung-Bum Kim Dunbar, R. Scott Colliander, Andreas Cosh, Michael H. Caldwell, Todd G. Walker, Jeffrey P. Berg, Aaron A. |
description | Many previous studies have shown the sensitivity of radar backscatter to surface soil moisture content, particularly at L-band. Moreover, the estimation of soil moisture from radar for bare soil surfaces is well-documented, but estimation underneath a vegetation canopy remains unsolved. Vegetation significantly increases the complexity of modeling the electromagnetic scattering in the observed scene, and can even obstruct the contributions from the underlying soil surface. Existing approaches to estimating soil moisture under vegetation using radar typically rely on a forward model to describe the backscattered signal and often require that the vegetation characteristics of the observed scene be provided by an ancillary data source. However, such information may not be reliable or available during the radar overpass of the observed scene (e.g., due to cloud coverage if derived from an optical sensor). Thus, the approach described herein is an extension of a change-detection method for soil moisture estimation, which does not require ancillary vegetation information, nor does it make use of a complicated forward scattering model. Novel modifications to the original algorithm include extension to multiple polarizations and a new technique for bounding the radar-derived soil moisture product using radiometer-based soil moisture estimates. Soil moisture estimates are generated using data from the Soil Moisture Active/Passive (SMAP) satellite-borne radar and radiometer data, and are compared with up-scaled data from a selection of in situ networks used in SMAP validation activities. These results show that the new algorithm can consistently achieve rms errors less than 0.07 m 3 /m 3 over a variety land cover types. |
doi_str_mv | 10.1109/TGRS.2017.2663768 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7864350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7864350</ieee_id><sourcerecordid>2174436619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8440570060053e406d8cd0d37d84cb9bc96a4b06509c56aa7a39883fa5a0c0903</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujiYj-AOOmievB1-n3EgigCcaEAbeT0ilYBAbbzsJ_70wgrt7m3PtyD0KPBAaEgH5ZzhbFIAciB7kQVAp1hXqEc5WBYOwa9YBokeVK57foLsYdAGGcyB7yQ7z0B5cVLngX8fB0CrWxXzjVeBKTP5jkj1tc1H6P32sfUxMcnob6gD_d1iWTXIWLJmyMbcOr2LHzbGSOFV6YygQ8MvY7WpOSC_foZmP20T1cbh-tppPl-DWbf8zexsN5ZnNNU6YYAy4BBACnjoGolK2gorJSzK712mph2BoEB225MEYaqpWiG8MNWNBA--j53Nsu-WlcTOWubsKxfVnmRDJGhSC6pciZsqGOMbhNeQrt2vBbEig7o2VntOyMlhejbebpnPHOuX9eKsEoB_oHGYhw4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174436619</pqid></control><display><type>article</type><title>A Time-Series Approach to Estimating Soil Moisture From Vegetated Surfaces Using L-Band Radar Backscatter</title><source>IEEE Xplore (Online service)</source><creator>Ouellette, Jeffrey D. ; Johnson, Joel T. ; Balenzano, Anna ; Mattia, Francesco ; Satalino, Giuseppe ; Seung-Bum Kim ; Dunbar, R. Scott ; Colliander, Andreas ; Cosh, Michael H. ; Caldwell, Todd G. ; Walker, Jeffrey P. ; Berg, Aaron A.</creator><creatorcontrib>Ouellette, Jeffrey D. ; Johnson, Joel T. ; Balenzano, Anna ; Mattia, Francesco ; Satalino, Giuseppe ; Seung-Bum Kim ; Dunbar, R. Scott ; Colliander, Andreas ; Cosh, Michael H. ; Caldwell, Todd G. ; Walker, Jeffrey P. ; Berg, Aaron A.</creatorcontrib><description>Many previous studies have shown the sensitivity of radar backscatter to surface soil moisture content, particularly at L-band. Moreover, the estimation of soil moisture from radar for bare soil surfaces is well-documented, but estimation underneath a vegetation canopy remains unsolved. Vegetation significantly increases the complexity of modeling the electromagnetic scattering in the observed scene, and can even obstruct the contributions from the underlying soil surface. Existing approaches to estimating soil moisture under vegetation using radar typically rely on a forward model to describe the backscattered signal and often require that the vegetation characteristics of the observed scene be provided by an ancillary data source. However, such information may not be reliable or available during the radar overpass of the observed scene (e.g., due to cloud coverage if derived from an optical sensor). Thus, the approach described herein is an extension of a change-detection method for soil moisture estimation, which does not require ancillary vegetation information, nor does it make use of a complicated forward scattering model. Novel modifications to the original algorithm include extension to multiple polarizations and a new technique for bounding the radar-derived soil moisture product using radiometer-based soil moisture estimates. Soil moisture estimates are generated using data from the Soil Moisture Active/Passive (SMAP) satellite-borne radar and radiometer data, and are compared with up-scaled data from a selection of in situ networks used in SMAP validation activities. These results show that the new algorithm can consistently achieve rms errors less than 0.07 m 3 /m 3 over a variety land cover types.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2663768</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Backscatter ; Backscattering ; Change detection ; Data ; Detection ; Electromagnetic scattering ; Estimation ; Forward scattering ; Land cover ; Modelling ; Moisture content ; Optical measuring instruments ; Parameter estimation ; Plant cover ; Radar ; Radiometers ; remote sensing ; Satellite-borne radar ; Satellites ; Scattering ; Soil ; Soil moisture ; Soil surfaces ; Vegetation ; Vegetation mapping ; Water content</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2017-06, Vol.55 (6), p.3186-3193</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8440570060053e406d8cd0d37d84cb9bc96a4b06509c56aa7a39883fa5a0c0903</citedby><cites>FETCH-LOGICAL-c293t-8440570060053e406d8cd0d37d84cb9bc96a4b06509c56aa7a39883fa5a0c0903</cites><orcidid>0000-0001-8438-5662 ; 0000-0002-1865-5617 ; 0000-0003-3718-2509 ; 0000-0003-4093-8119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7864350$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ouellette, Jeffrey D.</creatorcontrib><creatorcontrib>Johnson, Joel T.</creatorcontrib><creatorcontrib>Balenzano, Anna</creatorcontrib><creatorcontrib>Mattia, Francesco</creatorcontrib><creatorcontrib>Satalino, Giuseppe</creatorcontrib><creatorcontrib>Seung-Bum Kim</creatorcontrib><creatorcontrib>Dunbar, R. Scott</creatorcontrib><creatorcontrib>Colliander, Andreas</creatorcontrib><creatorcontrib>Cosh, Michael H.</creatorcontrib><creatorcontrib>Caldwell, Todd G.</creatorcontrib><creatorcontrib>Walker, Jeffrey P.</creatorcontrib><creatorcontrib>Berg, Aaron A.</creatorcontrib><title>A Time-Series Approach to Estimating Soil Moisture From Vegetated Surfaces Using L-Band Radar Backscatter</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Many previous studies have shown the sensitivity of radar backscatter to surface soil moisture content, particularly at L-band. Moreover, the estimation of soil moisture from radar for bare soil surfaces is well-documented, but estimation underneath a vegetation canopy remains unsolved. Vegetation significantly increases the complexity of modeling the electromagnetic scattering in the observed scene, and can even obstruct the contributions from the underlying soil surface. Existing approaches to estimating soil moisture under vegetation using radar typically rely on a forward model to describe the backscattered signal and often require that the vegetation characteristics of the observed scene be provided by an ancillary data source. However, such information may not be reliable or available during the radar overpass of the observed scene (e.g., due to cloud coverage if derived from an optical sensor). Thus, the approach described herein is an extension of a change-detection method for soil moisture estimation, which does not require ancillary vegetation information, nor does it make use of a complicated forward scattering model. Novel modifications to the original algorithm include extension to multiple polarizations and a new technique for bounding the radar-derived soil moisture product using radiometer-based soil moisture estimates. Soil moisture estimates are generated using data from the Soil Moisture Active/Passive (SMAP) satellite-borne radar and radiometer data, and are compared with up-scaled data from a selection of in situ networks used in SMAP validation activities. These results show that the new algorithm can consistently achieve rms errors less than 0.07 m 3 /m 3 over a variety land cover types.</description><subject>Algorithms</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Change detection</subject><subject>Data</subject><subject>Detection</subject><subject>Electromagnetic scattering</subject><subject>Estimation</subject><subject>Forward scattering</subject><subject>Land cover</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>Optical measuring instruments</subject><subject>Parameter estimation</subject><subject>Plant cover</subject><subject>Radar</subject><subject>Radiometers</subject><subject>remote sensing</subject><subject>Satellite-borne radar</subject><subject>Satellites</subject><subject>Scattering</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Soil surfaces</subject><subject>Vegetation</subject><subject>Vegetation mapping</subject><subject>Water content</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEURRujiYj-AOOmievB1-n3EgigCcaEAbeT0ilYBAbbzsJ_70wgrt7m3PtyD0KPBAaEgH5ZzhbFIAciB7kQVAp1hXqEc5WBYOwa9YBokeVK57foLsYdAGGcyB7yQ7z0B5cVLngX8fB0CrWxXzjVeBKTP5jkj1tc1H6P32sfUxMcnob6gD_d1iWTXIWLJmyMbcOr2LHzbGSOFV6YygQ8MvY7WpOSC_foZmP20T1cbh-tppPl-DWbf8zexsN5ZnNNU6YYAy4BBACnjoGolK2gorJSzK712mph2BoEB225MEYaqpWiG8MNWNBA--j53Nsu-WlcTOWubsKxfVnmRDJGhSC6pciZsqGOMbhNeQrt2vBbEig7o2VntOyMlhejbebpnPHOuX9eKsEoB_oHGYhw4A</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Ouellette, Jeffrey D.</creator><creator>Johnson, Joel T.</creator><creator>Balenzano, Anna</creator><creator>Mattia, Francesco</creator><creator>Satalino, Giuseppe</creator><creator>Seung-Bum Kim</creator><creator>Dunbar, R. Scott</creator><creator>Colliander, Andreas</creator><creator>Cosh, Michael H.</creator><creator>Caldwell, Todd G.</creator><creator>Walker, Jeffrey P.</creator><creator>Berg, Aaron A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8438-5662</orcidid><orcidid>https://orcid.org/0000-0002-1865-5617</orcidid><orcidid>https://orcid.org/0000-0003-3718-2509</orcidid><orcidid>https://orcid.org/0000-0003-4093-8119</orcidid></search><sort><creationdate>201706</creationdate><title>A Time-Series Approach to Estimating Soil Moisture From Vegetated Surfaces Using L-Band Radar Backscatter</title><author>Ouellette, Jeffrey D. ; Johnson, Joel T. ; Balenzano, Anna ; Mattia, Francesco ; Satalino, Giuseppe ; Seung-Bum Kim ; Dunbar, R. Scott ; Colliander, Andreas ; Cosh, Michael H. ; Caldwell, Todd G. ; Walker, Jeffrey P. ; Berg, Aaron A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8440570060053e406d8cd0d37d84cb9bc96a4b06509c56aa7a39883fa5a0c0903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Change detection</topic><topic>Data</topic><topic>Detection</topic><topic>Electromagnetic scattering</topic><topic>Estimation</topic><topic>Forward scattering</topic><topic>Land cover</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>Optical measuring instruments</topic><topic>Parameter estimation</topic><topic>Plant cover</topic><topic>Radar</topic><topic>Radiometers</topic><topic>remote sensing</topic><topic>Satellite-borne radar</topic><topic>Satellites</topic><topic>Scattering</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Soil surfaces</topic><topic>Vegetation</topic><topic>Vegetation mapping</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouellette, Jeffrey D.</creatorcontrib><creatorcontrib>Johnson, Joel T.</creatorcontrib><creatorcontrib>Balenzano, Anna</creatorcontrib><creatorcontrib>Mattia, Francesco</creatorcontrib><creatorcontrib>Satalino, Giuseppe</creatorcontrib><creatorcontrib>Seung-Bum Kim</creatorcontrib><creatorcontrib>Dunbar, R. Scott</creatorcontrib><creatorcontrib>Colliander, Andreas</creatorcontrib><creatorcontrib>Cosh, Michael H.</creatorcontrib><creatorcontrib>Caldwell, Todd G.</creatorcontrib><creatorcontrib>Walker, Jeffrey P.</creatorcontrib><creatorcontrib>Berg, Aaron A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouellette, Jeffrey D.</au><au>Johnson, Joel T.</au><au>Balenzano, Anna</au><au>Mattia, Francesco</au><au>Satalino, Giuseppe</au><au>Seung-Bum Kim</au><au>Dunbar, R. Scott</au><au>Colliander, Andreas</au><au>Cosh, Michael H.</au><au>Caldwell, Todd G.</au><au>Walker, Jeffrey P.</au><au>Berg, Aaron A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Time-Series Approach to Estimating Soil Moisture From Vegetated Surfaces Using L-Band Radar Backscatter</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2017-06</date><risdate>2017</risdate><volume>55</volume><issue>6</issue><spage>3186</spage><epage>3193</epage><pages>3186-3193</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Many previous studies have shown the sensitivity of radar backscatter to surface soil moisture content, particularly at L-band. Moreover, the estimation of soil moisture from radar for bare soil surfaces is well-documented, but estimation underneath a vegetation canopy remains unsolved. Vegetation significantly increases the complexity of modeling the electromagnetic scattering in the observed scene, and can even obstruct the contributions from the underlying soil surface. Existing approaches to estimating soil moisture under vegetation using radar typically rely on a forward model to describe the backscattered signal and often require that the vegetation characteristics of the observed scene be provided by an ancillary data source. However, such information may not be reliable or available during the radar overpass of the observed scene (e.g., due to cloud coverage if derived from an optical sensor). Thus, the approach described herein is an extension of a change-detection method for soil moisture estimation, which does not require ancillary vegetation information, nor does it make use of a complicated forward scattering model. Novel modifications to the original algorithm include extension to multiple polarizations and a new technique for bounding the radar-derived soil moisture product using radiometer-based soil moisture estimates. Soil moisture estimates are generated using data from the Soil Moisture Active/Passive (SMAP) satellite-borne radar and radiometer data, and are compared with up-scaled data from a selection of in situ networks used in SMAP validation activities. These results show that the new algorithm can consistently achieve rms errors less than 0.07 m 3 /m 3 over a variety land cover types.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2663768</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8438-5662</orcidid><orcidid>https://orcid.org/0000-0002-1865-5617</orcidid><orcidid>https://orcid.org/0000-0003-3718-2509</orcidid><orcidid>https://orcid.org/0000-0003-4093-8119</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2017-06, Vol.55 (6), p.3186-3193 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_7864350 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Backscatter Backscattering Change detection Data Detection Electromagnetic scattering Estimation Forward scattering Land cover Modelling Moisture content Optical measuring instruments Parameter estimation Plant cover Radar Radiometers remote sensing Satellite-borne radar Satellites Scattering Soil Soil moisture Soil surfaces Vegetation Vegetation mapping Water content |
title | A Time-Series Approach to Estimating Soil Moisture From Vegetated Surfaces Using L-Band Radar Backscatter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Time-Series%20Approach%20to%20Estimating%20Soil%20Moisture%20From%20Vegetated%20Surfaces%20Using%20L-Band%20Radar%20Backscatter&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Ouellette,%20Jeffrey%20D.&rft.date=2017-06&rft.volume=55&rft.issue=6&rft.spage=3186&rft.epage=3193&rft.pages=3186-3193&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2663768&rft_dat=%3Cproquest_ieee_%3E2174436619%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-8440570060053e406d8cd0d37d84cb9bc96a4b06509c56aa7a39883fa5a0c0903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174436619&rft_id=info:pmid/&rft_ieee_id=7864350&rfr_iscdi=true |