Loading…

Regularized LAD algorithms for sparse time-varying system identification with outliers

Two regularized least mean absolute deviation (LAD) algorithms are proposed for sparse system identification, which are referred to as zero-attracting LAD (ZA-LAD) and re-weighted zero-attracting LAD (RZA-LAD), respectively. The LAD type algorithms are robust to the impulsive noises. Furthermore, ℓ...

Full description

Saved in:
Bibliographic Details
Main Authors: Fuxi Wen, Wei Liu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 612
container_issue
container_start_page 609
container_title
container_volume
creator Fuxi Wen
Wei Liu
description Two regularized least mean absolute deviation (LAD) algorithms are proposed for sparse system identification, which are referred to as zero-attracting LAD (ZA-LAD) and re-weighted zero-attracting LAD (RZA-LAD), respectively. The LAD type algorithms are robust to the impulsive noises. Furthermore, ℓ 1 -norm penalty is imposed on the filter coefficients to exploit sparsity of the system. The performance of ZA-LAD type algorithms is evaluated for linear time varying system identification under impulsive noise environments through computer simulations.
doi_str_mv 10.1109/ICDSP.2016.7868630
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7868630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7868630</ieee_id><sourcerecordid>7868630</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-912b308e7c54fe1c3ae2f7cb29af957c57e5689e4fd85bda44b2d50bcea25f243</originalsourceid><addsrcrecordid>eNotkF1LwzAYhaMgOOf-gN7kD3Tms0kuR6dzUFB0eDvS9k2N9GMkmTJ_vQV39cCB83A4CN1RsqSUmIdtsX5_XTJC86XSuc45uUALozSVxBBBc6ku0YxNzLhU6hrdxPhFiOTU0Bn6eIP22Nngf6HB5WqNbdeOwafPPmI3BhwPNkTAyfeQfdtw8kOL4ykm6LFvYEje-domPw74Zyrh8Zg6DyHeoitnuwiLM-do9_S4K56z8mWzLVZl5g1JmaGs4kSDqqVwQGtugTlVV8xYZ-SUKpC5NiBco2XVWCEq1khS1WCZdEzwObr_13oA2B-C76eJ-_ML_A90I1N1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Regularized LAD algorithms for sparse time-varying system identification with outliers</title><source>IEEE Xplore All Conference Series</source><creator>Fuxi Wen ; Wei Liu</creator><creatorcontrib>Fuxi Wen ; Wei Liu</creatorcontrib><description>Two regularized least mean absolute deviation (LAD) algorithms are proposed for sparse system identification, which are referred to as zero-attracting LAD (ZA-LAD) and re-weighted zero-attracting LAD (RZA-LAD), respectively. The LAD type algorithms are robust to the impulsive noises. Furthermore, ℓ 1 -norm penalty is imposed on the filter coefficients to exploit sparsity of the system. The performance of ZA-LAD type algorithms is evaluated for linear time varying system identification under impulsive noise environments through computer simulations.</description><identifier>EISSN: 2165-3577</identifier><identifier>EISBN: 9781509041657</identifier><identifier>EISBN: 1509041656</identifier><identifier>DOI: 10.1109/ICDSP.2016.7868630</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive systems ; Algorithm design and analysis ; Convergence ; Cost function ; least mean absolute deviation ; outliers ; Prediction algorithms ; sparsity ; Steady-state ; time-varying system identification ; Time-varying systems ; zero-attracting</subject><ispartof>2016 IEEE International Conference on Digital Signal Processing (DSP), 2016, p.609-612</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7868630$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7868630$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fuxi Wen</creatorcontrib><creatorcontrib>Wei Liu</creatorcontrib><title>Regularized LAD algorithms for sparse time-varying system identification with outliers</title><title>2016 IEEE International Conference on Digital Signal Processing (DSP)</title><addtitle>ICDSP</addtitle><description>Two regularized least mean absolute deviation (LAD) algorithms are proposed for sparse system identification, which are referred to as zero-attracting LAD (ZA-LAD) and re-weighted zero-attracting LAD (RZA-LAD), respectively. The LAD type algorithms are robust to the impulsive noises. Furthermore, ℓ 1 -norm penalty is imposed on the filter coefficients to exploit sparsity of the system. The performance of ZA-LAD type algorithms is evaluated for linear time varying system identification under impulsive noise environments through computer simulations.</description><subject>Adaptive systems</subject><subject>Algorithm design and analysis</subject><subject>Convergence</subject><subject>Cost function</subject><subject>least mean absolute deviation</subject><subject>outliers</subject><subject>Prediction algorithms</subject><subject>sparsity</subject><subject>Steady-state</subject><subject>time-varying system identification</subject><subject>Time-varying systems</subject><subject>zero-attracting</subject><issn>2165-3577</issn><isbn>9781509041657</isbn><isbn>1509041656</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkF1LwzAYhaMgOOf-gN7kD3Tms0kuR6dzUFB0eDvS9k2N9GMkmTJ_vQV39cCB83A4CN1RsqSUmIdtsX5_XTJC86XSuc45uUALozSVxBBBc6ku0YxNzLhU6hrdxPhFiOTU0Bn6eIP22Nngf6HB5WqNbdeOwafPPmI3BhwPNkTAyfeQfdtw8kOL4ykm6LFvYEje-domPw74Zyrh8Zg6DyHeoitnuwiLM-do9_S4K56z8mWzLVZl5g1JmaGs4kSDqqVwQGtugTlVV8xYZ-SUKpC5NiBco2XVWCEq1khS1WCZdEzwObr_13oA2B-C76eJ-_ML_A90I1N1</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Fuxi Wen</creator><creator>Wei Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201610</creationdate><title>Regularized LAD algorithms for sparse time-varying system identification with outliers</title><author>Fuxi Wen ; Wei Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-912b308e7c54fe1c3ae2f7cb29af957c57e5689e4fd85bda44b2d50bcea25f243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive systems</topic><topic>Algorithm design and analysis</topic><topic>Convergence</topic><topic>Cost function</topic><topic>least mean absolute deviation</topic><topic>outliers</topic><topic>Prediction algorithms</topic><topic>sparsity</topic><topic>Steady-state</topic><topic>time-varying system identification</topic><topic>Time-varying systems</topic><topic>zero-attracting</topic><toplevel>online_resources</toplevel><creatorcontrib>Fuxi Wen</creatorcontrib><creatorcontrib>Wei Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fuxi Wen</au><au>Wei Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Regularized LAD algorithms for sparse time-varying system identification with outliers</atitle><btitle>2016 IEEE International Conference on Digital Signal Processing (DSP)</btitle><stitle>ICDSP</stitle><date>2016-10</date><risdate>2016</risdate><spage>609</spage><epage>612</epage><pages>609-612</pages><eissn>2165-3577</eissn><eisbn>9781509041657</eisbn><eisbn>1509041656</eisbn><abstract>Two regularized least mean absolute deviation (LAD) algorithms are proposed for sparse system identification, which are referred to as zero-attracting LAD (ZA-LAD) and re-weighted zero-attracting LAD (RZA-LAD), respectively. The LAD type algorithms are robust to the impulsive noises. Furthermore, ℓ 1 -norm penalty is imposed on the filter coefficients to exploit sparsity of the system. The performance of ZA-LAD type algorithms is evaluated for linear time varying system identification under impulsive noise environments through computer simulations.</abstract><pub>IEEE</pub><doi>10.1109/ICDSP.2016.7868630</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2165-3577
ispartof 2016 IEEE International Conference on Digital Signal Processing (DSP), 2016, p.609-612
issn 2165-3577
language eng
recordid cdi_ieee_primary_7868630
source IEEE Xplore All Conference Series
subjects Adaptive systems
Algorithm design and analysis
Convergence
Cost function
least mean absolute deviation
outliers
Prediction algorithms
sparsity
Steady-state
time-varying system identification
Time-varying systems
zero-attracting
title Regularized LAD algorithms for sparse time-varying system identification with outliers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Regularized%20LAD%20algorithms%20for%20sparse%20time-varying%20system%20identification%20with%20outliers&rft.btitle=2016%20IEEE%20International%20Conference%20on%20Digital%20Signal%20Processing%20(DSP)&rft.au=Fuxi%20Wen&rft.date=2016-10&rft.spage=609&rft.epage=612&rft.pages=609-612&rft.eissn=2165-3577&rft_id=info:doi/10.1109/ICDSP.2016.7868630&rft.eisbn=9781509041657&rft.eisbn_list=1509041656&rft_dat=%3Cieee_CHZPO%3E7868630%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-912b308e7c54fe1c3ae2f7cb29af957c57e5689e4fd85bda44b2d50bcea25f243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7868630&rfr_iscdi=true