Loading…

Multiple Patterning Layout Decomposition Considering Complex Coloring Rules and Density Balancing

Multiple patterning lithography has been recognized as one of the most promising solutions, in addition to extreme ultraviolet lithography, directed self-assembly, nanoimprint lithography, and electron beam lithography, for advancing the resolution limit of conventional optical lithography. Multiple...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computer-aided design of integrated circuits and systems 2017-12, Vol.36 (12), p.2080-2092
Main Authors: Jiang, Iris Hui-Ru, Hua-Yu Chang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multiple patterning lithography has been recognized as one of the most promising solutions, in addition to extreme ultraviolet lithography, directed self-assembly, nanoimprint lithography, and electron beam lithography, for advancing the resolution limit of conventional optical lithography. Multiple patterning layout decomposition (MPLD) becomes more challenging as advanced technology introduces complex coloring rules. Existing works model MPLD as a graph coloring problem; nevertheless, when complex coloring rules are considered, layout decomposition can no longer be modeled accurately by graph coloring. Therefore, in this paper, for capturing the essence of layout decomposition with complex coloring rules, we model the MPLD problem as an exact cover problem. We then propose a fast and exact MPLD framework based on augmented dancing links. Our method is flexible and general: it can consider the basic and complex coloring rules simultaneously, can maintain density balancing, and can handle quadruple patterning and beyond. Experimental results show that our approach outperforms state-of-the-art works on reported conflicts and stitches and is promising for handling complex coloring rules and density balancing as well.
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2017.2681068