Loading…
High-Frequency Nonlinear Earthquake Simulations on Petascale Heterogeneous Supercomputers
The omission of nonlinear effects in large-scale 3D ground motion estimation, which are particularly challenging due to memory and scalability issues, can result in costly misguidance for structural design in earthquake-prone regions. We have implemented nonlinearity using a Drucker-Prager yield con...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The omission of nonlinear effects in large-scale 3D ground motion estimation, which are particularly challenging due to memory and scalability issues, can result in costly misguidance for structural design in earthquake-prone regions. We have implemented nonlinearity using a Drucker-Prager yield condition in AWP-ODC and further optimized the CUDA kernels to more efficiently utilize the GPU's memory bandwidth. The application has resulted in a significant increase in the model region and accuracy for state-of-the-art earthquake simulations in a realistic earth structure, which are now able to resolve the wavefield at frequencies relevant for the most vulnerable buildings (> 1 Hz) while maintaining the scalability and efficiency of the method. We successfully run the code on 4,200 Kepler K20X GPUs on NCSA Blue Waters and OLCF Titan to simulate a M 7.7 earthquake on the southern San Andreas fault with a spatial resolution of 25 m for frequencies up to 4 Hz. |
---|---|
ISSN: | 2167-4337 |
DOI: | 10.1109/SC.2016.81 |