Loading…

Robust change detection in signals using energy concentration and regression models

Reliable characterization of different signals is essential for better understanding of their generating and propagation phenomena. Many works in this area have been based on detecting special patterns or clusters in data, and event detection using parametric models. In this paper we present an appr...

Full description

Saved in:
Bibliographic Details
Main Authors: Popescu, Theodor D., Aiordachioaie, Dorel
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1712
container_issue
container_start_page 1707
container_title
container_volume
creator Popescu, Theodor D.
Aiordachioaie, Dorel
description Reliable characterization of different signals is essential for better understanding of their generating and propagation phenomena. Many works in this area have been based on detecting special patterns or clusters in data, and event detection using parametric models. In this paper we present an approach making use of the short-term time-frequency Renyi entropy and an algorithm to discriminate between the model parameter and noise variance changes, operating on Renyi entropy, as a new space of decision. This method enables a simpler analysis and interpretation of the signals behavior. The procedure is used, with good results, in the analysis of a seismic signal during a strong to moderate ground motion.
doi_str_mv 10.1109/ICSP.2016.7878119
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7878119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7878119</ieee_id><sourcerecordid>7878119</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2e45ff737d1cc3927d18ba4d9fda0c3ff5ad5681e6fd19c14e03f0b87a625c443</originalsourceid><addsrcrecordid>eNotkM9KAzEYxCMqWOs-gHjJC2zNl3-bHKVoLRQUq-eSJl_WSJuVzfbQt3fVnobfMDOHIeQW2AyA2fvlfP064wz0rDGNAbBn5BoUswyEVOacVHZ0TyztBZlw0LJWnMMVqUr5YowJMEYLPSHrt257KAP1ny63SAMO6IfUZZoyLanNblfooaTcUszYt0fqu-wxD737S7kcaI9tj6X84r4LuCs35DKOPaxOOiUfT4_v8-d69bJYzh9WdYJGDTVHqWJsRBPAe2H5qGbrZLAxOOZFjMoFpQ2gjgGsB4lMRLY1jdNceSnFlNz97yZE3Hz3ae_64-b0ifgBc5NUqA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust change detection in signals using energy concentration and regression models</title><source>IEEE Xplore All Conference Series</source><creator>Popescu, Theodor D. ; Aiordachioaie, Dorel</creator><creatorcontrib>Popescu, Theodor D. ; Aiordachioaie, Dorel</creatorcontrib><description>Reliable characterization of different signals is essential for better understanding of their generating and propagation phenomena. Many works in this area have been based on detecting special patterns or clusters in data, and event detection using parametric models. In this paper we present an approach making use of the short-term time-frequency Renyi entropy and an algorithm to discriminate between the model parameter and noise variance changes, operating on Renyi entropy, as a new space of decision. This method enables a simpler analysis and interpretation of the signals behavior. The procedure is used, with good results, in the analysis of a seismic signal during a strong to moderate ground motion.</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 9781509013449</identifier><identifier>ISBN: 150901344X</identifier><identifier>EISBN: 1509013458</identifier><identifier>EISBN: 9781509013456</identifier><identifier>EISBN: 1509013431</identifier><identifier>EISBN: 9781509013432</identifier><identifier>DOI: 10.1109/ICSP.2016.7878119</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Entropy ; Kernel ; Robustness ; Signal processing ; Time-frequency analysis</subject><ispartof>2016 IEEE 13th International Conference on Signal Processing (ICSP), 2016, p.1707-1712</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7878119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7878119$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Popescu, Theodor D.</creatorcontrib><creatorcontrib>Aiordachioaie, Dorel</creatorcontrib><title>Robust change detection in signals using energy concentration and regression models</title><title>2016 IEEE 13th International Conference on Signal Processing (ICSP)</title><addtitle>ICSP</addtitle><description>Reliable characterization of different signals is essential for better understanding of their generating and propagation phenomena. Many works in this area have been based on detecting special patterns or clusters in data, and event detection using parametric models. In this paper we present an approach making use of the short-term time-frequency Renyi entropy and an algorithm to discriminate between the model parameter and noise variance changes, operating on Renyi entropy, as a new space of decision. This method enables a simpler analysis and interpretation of the signals behavior. The procedure is used, with good results, in the analysis of a seismic signal during a strong to moderate ground motion.</description><subject>Algorithm design and analysis</subject><subject>Entropy</subject><subject>Kernel</subject><subject>Robustness</subject><subject>Signal processing</subject><subject>Time-frequency analysis</subject><issn>2164-5221</issn><isbn>9781509013449</isbn><isbn>150901344X</isbn><isbn>1509013458</isbn><isbn>9781509013456</isbn><isbn>1509013431</isbn><isbn>9781509013432</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM9KAzEYxCMqWOs-gHjJC2zNl3-bHKVoLRQUq-eSJl_WSJuVzfbQt3fVnobfMDOHIeQW2AyA2fvlfP064wz0rDGNAbBn5BoUswyEVOacVHZ0TyztBZlw0LJWnMMVqUr5YowJMEYLPSHrt257KAP1ny63SAMO6IfUZZoyLanNblfooaTcUszYt0fqu-wxD737S7kcaI9tj6X84r4LuCs35DKOPaxOOiUfT4_v8-d69bJYzh9WdYJGDTVHqWJsRBPAe2H5qGbrZLAxOOZFjMoFpQ2gjgGsB4lMRLY1jdNceSnFlNz97yZE3Hz3ae_64-b0ifgBc5NUqA</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Popescu, Theodor D.</creator><creator>Aiordachioaie, Dorel</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201611</creationdate><title>Robust change detection in signals using energy concentration and regression models</title><author>Popescu, Theodor D. ; Aiordachioaie, Dorel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2e45ff737d1cc3927d18ba4d9fda0c3ff5ad5681e6fd19c14e03f0b87a625c443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Entropy</topic><topic>Kernel</topic><topic>Robustness</topic><topic>Signal processing</topic><topic>Time-frequency analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Popescu, Theodor D.</creatorcontrib><creatorcontrib>Aiordachioaie, Dorel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Popescu, Theodor D.</au><au>Aiordachioaie, Dorel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust change detection in signals using energy concentration and regression models</atitle><btitle>2016 IEEE 13th International Conference on Signal Processing (ICSP)</btitle><stitle>ICSP</stitle><date>2016-11</date><risdate>2016</risdate><spage>1707</spage><epage>1712</epage><pages>1707-1712</pages><issn>2164-5221</issn><isbn>9781509013449</isbn><isbn>150901344X</isbn><eisbn>1509013458</eisbn><eisbn>9781509013456</eisbn><eisbn>1509013431</eisbn><eisbn>9781509013432</eisbn><abstract>Reliable characterization of different signals is essential for better understanding of their generating and propagation phenomena. Many works in this area have been based on detecting special patterns or clusters in data, and event detection using parametric models. In this paper we present an approach making use of the short-term time-frequency Renyi entropy and an algorithm to discriminate between the model parameter and noise variance changes, operating on Renyi entropy, as a new space of decision. This method enables a simpler analysis and interpretation of the signals behavior. The procedure is used, with good results, in the analysis of a seismic signal during a strong to moderate ground motion.</abstract><pub>IEEE</pub><doi>10.1109/ICSP.2016.7878119</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-5221
ispartof 2016 IEEE 13th International Conference on Signal Processing (ICSP), 2016, p.1707-1712
issn 2164-5221
language eng
recordid cdi_ieee_primary_7878119
source IEEE Xplore All Conference Series
subjects Algorithm design and analysis
Entropy
Kernel
Robustness
Signal processing
Time-frequency analysis
title Robust change detection in signals using energy concentration and regression models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20change%20detection%20in%20signals%20using%20energy%20concentration%20and%20regression%20models&rft.btitle=2016%20IEEE%2013th%20International%20Conference%20on%20Signal%20Processing%20(ICSP)&rft.au=Popescu,%20Theodor%20D.&rft.date=2016-11&rft.spage=1707&rft.epage=1712&rft.pages=1707-1712&rft.issn=2164-5221&rft.isbn=9781509013449&rft.isbn_list=150901344X&rft_id=info:doi/10.1109/ICSP.2016.7878119&rft.eisbn=1509013458&rft.eisbn_list=9781509013456&rft.eisbn_list=1509013431&rft.eisbn_list=9781509013432&rft_dat=%3Cieee_CHZPO%3E7878119%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-2e45ff737d1cc3927d18ba4d9fda0c3ff5ad5681e6fd19c14e03f0b87a625c443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7878119&rfr_iscdi=true