Loading…

Optimized Rule-Based Flood Mapping Technique Using Multitemporal RADARSAT-2 Images in the Tropical Region

Flood is one of the most common natural disasters in Malaysia. Preparing an accurate flood inventory map is the basic step in flood risk management. Flood detection is a complex process because of the limitation of methodological approaches and cloud coverage over tropical areas. An efficient approa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2017-07, Vol.10 (7), p.3190-3199
Main Authors: Pradhan, Biswajeet, Sameen, Maher Ibrahim, Kalantar, Bahareh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flood is one of the most common natural disasters in Malaysia. Preparing an accurate flood inventory map is the basic step in flood risk management. Flood detection is a complex process because of the limitation of methodological approaches and cloud coverage over tropical areas. An efficient approach is proposed to identify flooded areas using multitemporal RADARSAT-2 imageries. First, multispectral Landsat image was used to extract and subtract permanent water bodies, and this image was later utilized to extract the same information from multitemporal RADARSAT-2 imageries. Next, water bodies during a flood event were extracted from RADARSAT-2 images. Permanent water bodies, shadow, and paddy were detected from synthetic aperture radar (SAR) images by analyzing their temporal backscattering values. During feature extraction, rule-based object-oriented technique was applied to classify both SAR and Landsat images. Image segmentation during object-based analysis was performed to distinguish the boundaries of various dimensions and scales of objects. Moreover, a Taguchibased method was employed to optimize the segmentation parameters. After segmentation, the rules were defined and images were classified to produce an accurate flood inventory map for the 2014 Kelantan flood. A confusion matrix was generated to evaluate the performance of the classification method. The overall accuracy of 86.16% was achieved for RADARSAT-2 using rule-based classification and optimization technique. The resulting flood inventory map using the proposed approach supported the efficiency of the proposed methodology.
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2017.2676343