Loading…
Pioneer Design of Non-Contact Synchronized Measurement Devices Using Electric and Magnetic Field Sensors
Traditional synchrophasors rely on current transformers and potential transformers physically connected to transmission lines or buses to acquire input signals for phasor measurement. However, it is challenging to install and maintain traditional phasor measurement units in some remote areas due to...
Saved in:
Published in: | IEEE transactions on smart grid 2018-11, Vol.9 (6), p.5622-5630 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Traditional synchrophasors rely on current transformers and potential transformers physically connected to transmission lines or buses to acquire input signals for phasor measurement. However, it is challenging to install and maintain traditional phasor measurement units in some remote areas due to lack of facilities. Since transmission lines naturally generate alternating electrical and magnetic fields in the surrounding atmosphere, this paper presents two innovative designs for non-contact synchronized measurement devices (NCSMDs), including an electric field sensor-based non-contact SMD (E-NCSMD) and a magnetic field sensor-based non-contact SMD (M-NCSMD). Compared with conventional synchrophasors, E-NCSMD and M-NCSMD are much more flexible to be deployed and have much lower costs, making E-NCSMDs and M-NCSMD highly accessible and useful for a wide array of phasor measurement applications. Laboratory and field experiment results verified the effectiveness of the designs of both E-NCSMD and M-NCSMD. |
---|---|
ISSN: | 1949-3053 1949-3061 |
DOI: | 10.1109/TSG.2017.2692726 |