Loading…

Distributionally Robust Contingency-Constrained Unit Commitment

This paper proposes a distributionally robust optimization approach for the contingency-constrained unit commitment problem. In our approach, we consider a case where the true probability distribution of contingencies is ambiguous, i.e., difficult to accurately estimate. Instead of assigning a (fixe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2018-01, Vol.33 (1), p.94-102
Main Authors: Zhao, Chaoyue, Jiang, Ruiwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573
cites cdi_FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573
container_end_page 102
container_issue 1
container_start_page 94
container_title IEEE transactions on power systems
container_volume 33
creator Zhao, Chaoyue
Jiang, Ruiwei
description This paper proposes a distributionally robust optimization approach for the contingency-constrained unit commitment problem. In our approach, we consider a case where the true probability distribution of contingencies is ambiguous, i.e., difficult to accurately estimate. Instead of assigning a (fixed) probability estimate for each contingency scenario, we consider a set of contingency probability distributions (termed the ambiguity set) based on the N-k security criterion and moment information. Our approach considers all possible distributions in the ambiguity set, and is hence distributionally robust. Meanwhile, as this approach utilizes moment information, it can benefit from available data and become less conservative than the robust optimization approaches. We derive an equivalent reformulation and study a Benders' decomposition algorithm for solving the model. Furthermore, we extend the model to incorporate wind power uncertainty. The case studies on a 6-Bus system and the IEEE 118-Bus system demonstrate that the proposed approach provides less conservative unit commitment decisions as compared with the robust optimization approach.
doi_str_mv 10.1109/TPWRS.2017.2699121
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7913718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7913718</ieee_id><sourcerecordid>10_1109_TPWRS_2017_2699121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573</originalsourceid><addsrcrecordid>eNo9kM1KxDAUhYMoWEdfQDd9gdTcpEmalUj9hQFlnMFlSZtUIm0qTWbRt7d1BlfnwrnfWXwIXQPJAIi63b5_bj4ySkBmVCgFFE5QApwXmAipTlFCioLjQnFyji5C-CaEiLlI0N2DC3F09T66weuum9LNUO9DTMvBR-e_rG8mPN_zk3bemnTn3VL2vYu99fESnbW6C_bqmCu0e3rcli94_fb8Wt6vcQNKRgyssLklTEFDdKuFMkIylue0VkwxKrjQ1AihamaMqVva0Ny0nImWyxwEl2yF6GG3GYcQRttWP6Pr9ThVQKpFQfWnoFoUVEcFM3RzgJy19h-QCpiEgv0ChIpYuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributionally Robust Contingency-Constrained Unit Commitment</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhao, Chaoyue ; Jiang, Ruiwei</creator><creatorcontrib>Zhao, Chaoyue ; Jiang, Ruiwei</creatorcontrib><description>This paper proposes a distributionally robust optimization approach for the contingency-constrained unit commitment problem. In our approach, we consider a case where the true probability distribution of contingencies is ambiguous, i.e., difficult to accurately estimate. Instead of assigning a (fixed) probability estimate for each contingency scenario, we consider a set of contingency probability distributions (termed the ambiguity set) based on the N-k security criterion and moment information. Our approach considers all possible distributions in the ambiguity set, and is hence distributionally robust. Meanwhile, as this approach utilizes moment information, it can benefit from available data and become less conservative than the robust optimization approaches. We derive an equivalent reformulation and study a Benders' decomposition algorithm for solving the model. Furthermore, we extend the model to incorporate wind power uncertainty. The case studies on a 6-Bus system and the IEEE 118-Bus system demonstrate that the proposed approach provides less conservative unit commitment decisions as compared with the robust optimization approach.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2017.2699121</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> N-k</tex-math> </inline-formula> </named-content> security criterion ; Distributional robustness ; Generators ; Indexes ; Load modeling ; Power transmission lines ; Probability distribution ; Robustness ; Security ; unit commitment]]></subject><ispartof>IEEE transactions on power systems, 2018-01, Vol.33 (1), p.94-102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573</citedby><cites>FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573</cites><orcidid>0000-0003-0442-2991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7913718$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhao, Chaoyue</creatorcontrib><creatorcontrib>Jiang, Ruiwei</creatorcontrib><title>Distributionally Robust Contingency-Constrained Unit Commitment</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper proposes a distributionally robust optimization approach for the contingency-constrained unit commitment problem. In our approach, we consider a case where the true probability distribution of contingencies is ambiguous, i.e., difficult to accurately estimate. Instead of assigning a (fixed) probability estimate for each contingency scenario, we consider a set of contingency probability distributions (termed the ambiguity set) based on the N-k security criterion and moment information. Our approach considers all possible distributions in the ambiguity set, and is hence distributionally robust. Meanwhile, as this approach utilizes moment information, it can benefit from available data and become less conservative than the robust optimization approaches. We derive an equivalent reformulation and study a Benders' decomposition algorithm for solving the model. Furthermore, we extend the model to incorporate wind power uncertainty. The case studies on a 6-Bus system and the IEEE 118-Bus system demonstrate that the proposed approach provides less conservative unit commitment decisions as compared with the robust optimization approach.</description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> N-k</tex-math> </inline-formula> </named-content> security criterion]]></subject><subject>Distributional robustness</subject><subject>Generators</subject><subject>Indexes</subject><subject>Load modeling</subject><subject>Power transmission lines</subject><subject>Probability distribution</subject><subject>Robustness</subject><subject>Security</subject><subject>unit commitment</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KxDAUhYMoWEdfQDd9gdTcpEmalUj9hQFlnMFlSZtUIm0qTWbRt7d1BlfnwrnfWXwIXQPJAIi63b5_bj4ySkBmVCgFFE5QApwXmAipTlFCioLjQnFyji5C-CaEiLlI0N2DC3F09T66weuum9LNUO9DTMvBR-e_rG8mPN_zk3bemnTn3VL2vYu99fESnbW6C_bqmCu0e3rcli94_fb8Wt6vcQNKRgyssLklTEFDdKuFMkIylue0VkwxKrjQ1AihamaMqVva0Ny0nImWyxwEl2yF6GG3GYcQRttWP6Pr9ThVQKpFQfWnoFoUVEcFM3RzgJy19h-QCpiEgv0ChIpYuA</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Zhao, Chaoyue</creator><creator>Jiang, Ruiwei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0442-2991</orcidid></search><sort><creationdate>201801</creationdate><title>Distributionally Robust Contingency-Constrained Unit Commitment</title><author>Zhao, Chaoyue ; Jiang, Ruiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> N-k</tex-math> </inline-formula> </named-content> security criterion]]></topic><topic>Distributional robustness</topic><topic>Generators</topic><topic>Indexes</topic><topic>Load modeling</topic><topic>Power transmission lines</topic><topic>Probability distribution</topic><topic>Robustness</topic><topic>Security</topic><topic>unit commitment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chaoyue</creatorcontrib><creatorcontrib>Jiang, Ruiwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chaoyue</au><au>Jiang, Ruiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributionally Robust Contingency-Constrained Unit Commitment</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2018-01</date><risdate>2018</risdate><volume>33</volume><issue>1</issue><spage>94</spage><epage>102</epage><pages>94-102</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper proposes a distributionally robust optimization approach for the contingency-constrained unit commitment problem. In our approach, we consider a case where the true probability distribution of contingencies is ambiguous, i.e., difficult to accurately estimate. Instead of assigning a (fixed) probability estimate for each contingency scenario, we consider a set of contingency probability distributions (termed the ambiguity set) based on the N-k security criterion and moment information. Our approach considers all possible distributions in the ambiguity set, and is hence distributionally robust. Meanwhile, as this approach utilizes moment information, it can benefit from available data and become less conservative than the robust optimization approaches. We derive an equivalent reformulation and study a Benders' decomposition algorithm for solving the model. Furthermore, we extend the model to incorporate wind power uncertainty. The case studies on a 6-Bus system and the IEEE 118-Bus system demonstrate that the proposed approach provides less conservative unit commitment decisions as compared with the robust optimization approach.</abstract><pub>IEEE</pub><doi>10.1109/TPWRS.2017.2699121</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0442-2991</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2018-01, Vol.33 (1), p.94-102
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_7913718
source IEEE Electronic Library (IEL) Journals
subjects <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> N-k</tex-math> </inline-formula> </named-content> security criterion
Distributional robustness
Generators
Indexes
Load modeling
Power transmission lines
Probability distribution
Robustness
Security
unit commitment
title Distributionally Robust Contingency-Constrained Unit Commitment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributionally%20Robust%20Contingency-Constrained%20Unit%20Commitment&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Zhao,%20Chaoyue&rft.date=2018-01&rft.volume=33&rft.issue=1&rft.spage=94&rft.epage=102&rft.pages=94-102&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2017.2699121&rft_dat=%3Ccrossref_ieee_%3E10_1109_TPWRS_2017_2699121%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7913718&rfr_iscdi=true