Loading…
Distributionally Robust Contingency-Constrained Unit Commitment
This paper proposes a distributionally robust optimization approach for the contingency-constrained unit commitment problem. In our approach, we consider a case where the true probability distribution of contingencies is ambiguous, i.e., difficult to accurately estimate. Instead of assigning a (fixe...
Saved in:
Published in: | IEEE transactions on power systems 2018-01, Vol.33 (1), p.94-102 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573 |
---|---|
cites | cdi_FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573 |
container_end_page | 102 |
container_issue | 1 |
container_start_page | 94 |
container_title | IEEE transactions on power systems |
container_volume | 33 |
creator | Zhao, Chaoyue Jiang, Ruiwei |
description | This paper proposes a distributionally robust optimization approach for the contingency-constrained unit commitment problem. In our approach, we consider a case where the true probability distribution of contingencies is ambiguous, i.e., difficult to accurately estimate. Instead of assigning a (fixed) probability estimate for each contingency scenario, we consider a set of contingency probability distributions (termed the ambiguity set) based on the N-k security criterion and moment information. Our approach considers all possible distributions in the ambiguity set, and is hence distributionally robust. Meanwhile, as this approach utilizes moment information, it can benefit from available data and become less conservative than the robust optimization approaches. We derive an equivalent reformulation and study a Benders' decomposition algorithm for solving the model. Furthermore, we extend the model to incorporate wind power uncertainty. The case studies on a 6-Bus system and the IEEE 118-Bus system demonstrate that the proposed approach provides less conservative unit commitment decisions as compared with the robust optimization approach. |
doi_str_mv | 10.1109/TPWRS.2017.2699121 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7913718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7913718</ieee_id><sourcerecordid>10_1109_TPWRS_2017_2699121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573</originalsourceid><addsrcrecordid>eNo9kM1KxDAUhYMoWEdfQDd9gdTcpEmalUj9hQFlnMFlSZtUIm0qTWbRt7d1BlfnwrnfWXwIXQPJAIi63b5_bj4ySkBmVCgFFE5QApwXmAipTlFCioLjQnFyji5C-CaEiLlI0N2DC3F09T66weuum9LNUO9DTMvBR-e_rG8mPN_zk3bemnTn3VL2vYu99fESnbW6C_bqmCu0e3rcli94_fb8Wt6vcQNKRgyssLklTEFDdKuFMkIylue0VkwxKrjQ1AihamaMqVva0Ny0nImWyxwEl2yF6GG3GYcQRttWP6Pr9ThVQKpFQfWnoFoUVEcFM3RzgJy19h-QCpiEgv0ChIpYuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributionally Robust Contingency-Constrained Unit Commitment</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhao, Chaoyue ; Jiang, Ruiwei</creator><creatorcontrib>Zhao, Chaoyue ; Jiang, Ruiwei</creatorcontrib><description>This paper proposes a distributionally robust optimization approach for the contingency-constrained unit commitment problem. In our approach, we consider a case where the true probability distribution of contingencies is ambiguous, i.e., difficult to accurately estimate. Instead of assigning a (fixed) probability estimate for each contingency scenario, we consider a set of contingency probability distributions (termed the ambiguity set) based on the N-k security criterion and moment information. Our approach considers all possible distributions in the ambiguity set, and is hence distributionally robust. Meanwhile, as this approach utilizes moment information, it can benefit from available data and become less conservative than the robust optimization approaches. We derive an equivalent reformulation and study a Benders' decomposition algorithm for solving the model. Furthermore, we extend the model to incorporate wind power uncertainty. The case studies on a 6-Bus system and the IEEE 118-Bus system demonstrate that the proposed approach provides less conservative unit commitment decisions as compared with the robust optimization approach.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2017.2699121</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> N-k</tex-math> </inline-formula> </named-content> security criterion ; Distributional robustness ; Generators ; Indexes ; Load modeling ; Power transmission lines ; Probability distribution ; Robustness ; Security ; unit commitment]]></subject><ispartof>IEEE transactions on power systems, 2018-01, Vol.33 (1), p.94-102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573</citedby><cites>FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573</cites><orcidid>0000-0003-0442-2991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7913718$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhao, Chaoyue</creatorcontrib><creatorcontrib>Jiang, Ruiwei</creatorcontrib><title>Distributionally Robust Contingency-Constrained Unit Commitment</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper proposes a distributionally robust optimization approach for the contingency-constrained unit commitment problem. In our approach, we consider a case where the true probability distribution of contingencies is ambiguous, i.e., difficult to accurately estimate. Instead of assigning a (fixed) probability estimate for each contingency scenario, we consider a set of contingency probability distributions (termed the ambiguity set) based on the N-k security criterion and moment information. Our approach considers all possible distributions in the ambiguity set, and is hence distributionally robust. Meanwhile, as this approach utilizes moment information, it can benefit from available data and become less conservative than the robust optimization approaches. We derive an equivalent reformulation and study a Benders' decomposition algorithm for solving the model. Furthermore, we extend the model to incorporate wind power uncertainty. The case studies on a 6-Bus system and the IEEE 118-Bus system demonstrate that the proposed approach provides less conservative unit commitment decisions as compared with the robust optimization approach.</description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> N-k</tex-math> </inline-formula> </named-content> security criterion]]></subject><subject>Distributional robustness</subject><subject>Generators</subject><subject>Indexes</subject><subject>Load modeling</subject><subject>Power transmission lines</subject><subject>Probability distribution</subject><subject>Robustness</subject><subject>Security</subject><subject>unit commitment</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KxDAUhYMoWEdfQDd9gdTcpEmalUj9hQFlnMFlSZtUIm0qTWbRt7d1BlfnwrnfWXwIXQPJAIi63b5_bj4ySkBmVCgFFE5QApwXmAipTlFCioLjQnFyji5C-CaEiLlI0N2DC3F09T66weuum9LNUO9DTMvBR-e_rG8mPN_zk3bemnTn3VL2vYu99fESnbW6C_bqmCu0e3rcli94_fb8Wt6vcQNKRgyssLklTEFDdKuFMkIylue0VkwxKrjQ1AihamaMqVva0Ny0nImWyxwEl2yF6GG3GYcQRttWP6Pr9ThVQKpFQfWnoFoUVEcFM3RzgJy19h-QCpiEgv0ChIpYuA</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Zhao, Chaoyue</creator><creator>Jiang, Ruiwei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0442-2991</orcidid></search><sort><creationdate>201801</creationdate><title>Distributionally Robust Contingency-Constrained Unit Commitment</title><author>Zhao, Chaoyue ; Jiang, Ruiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> N-k</tex-math> </inline-formula> </named-content> security criterion]]></topic><topic>Distributional robustness</topic><topic>Generators</topic><topic>Indexes</topic><topic>Load modeling</topic><topic>Power transmission lines</topic><topic>Probability distribution</topic><topic>Robustness</topic><topic>Security</topic><topic>unit commitment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chaoyue</creatorcontrib><creatorcontrib>Jiang, Ruiwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chaoyue</au><au>Jiang, Ruiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributionally Robust Contingency-Constrained Unit Commitment</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2018-01</date><risdate>2018</risdate><volume>33</volume><issue>1</issue><spage>94</spage><epage>102</epage><pages>94-102</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper proposes a distributionally robust optimization approach for the contingency-constrained unit commitment problem. In our approach, we consider a case where the true probability distribution of contingencies is ambiguous, i.e., difficult to accurately estimate. Instead of assigning a (fixed) probability estimate for each contingency scenario, we consider a set of contingency probability distributions (termed the ambiguity set) based on the N-k security criterion and moment information. Our approach considers all possible distributions in the ambiguity set, and is hence distributionally robust. Meanwhile, as this approach utilizes moment information, it can benefit from available data and become less conservative than the robust optimization approaches. We derive an equivalent reformulation and study a Benders' decomposition algorithm for solving the model. Furthermore, we extend the model to incorporate wind power uncertainty. The case studies on a 6-Bus system and the IEEE 118-Bus system demonstrate that the proposed approach provides less conservative unit commitment decisions as compared with the robust optimization approach.</abstract><pub>IEEE</pub><doi>10.1109/TPWRS.2017.2699121</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0442-2991</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2018-01, Vol.33 (1), p.94-102 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_7913718 |
source | IEEE Electronic Library (IEL) Journals |
subjects | <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> N-k</tex-math> </inline-formula> </named-content> security criterion Distributional robustness Generators Indexes Load modeling Power transmission lines Probability distribution Robustness Security unit commitment |
title | Distributionally Robust Contingency-Constrained Unit Commitment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributionally%20Robust%20Contingency-Constrained%20Unit%20Commitment&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Zhao,%20Chaoyue&rft.date=2018-01&rft.volume=33&rft.issue=1&rft.spage=94&rft.epage=102&rft.pages=94-102&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2017.2699121&rft_dat=%3Ccrossref_ieee_%3E10_1109_TPWRS_2017_2699121%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c197t-138e4e0391c0afa69d6733442b93932656a2d669b3dddbf2c24df536f57416573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7913718&rfr_iscdi=true |