Loading…
MR brain image segmentation using fuzzy clustering
In anatomical aspects, magnetic resonance (MR) imaging offers more accurate information for medical examination than other medical images such as X-ray, ultrasonic and CT images. In this paper, an automated segmentation and lesion detection algorithm are proposed for axial MR brain images. The propo...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 857 vol.2 |
container_issue | |
container_start_page | 853 |
container_title | |
container_volume | 2 |
creator | Ock-Kyung Yoon Dong-Min Kwak Dong-Whee Kim Kil-Houm Park |
description | In anatomical aspects, magnetic resonance (MR) imaging offers more accurate information for medical examination than other medical images such as X-ray, ultrasonic and CT images. In this paper, an automated segmentation and lesion detection algorithm are proposed for axial MR brain images. The proposed segmentation algorithm consists of two steps in order to reduce computation time for classifying tissues. In the first step, the cerebrum region is extracted by using thresholding, morphological operation, and labeling algorithm. In the second step, white matter, gray matter, and cerebrospinal fluid in the cerebrum are detected using fuzzy c-means (FCM) algorithm. The new lesion detection algorithm uses anatomical knowledge and local symmetry. A symmetric measure is defined to quantify the normality of MRI slice, which is based on the number of pixels, moment invariants, and Fourier descriptors. The proposed method has been applied to forty normal and abnormal slices. The experimental results show that the proposed segmentation algorithm is appropriate for classifying a large amount of axial brain MR data, and also show that the proposed lesion detection algorithm is successful. |
doi_str_mv | 10.1109/FUZZY.1999.793060 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_793060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>793060</ieee_id><sourcerecordid>793060</sourcerecordid><originalsourceid>FETCH-ieee_primary_7930603</originalsourceid><addsrcrecordid>eNp9TsEKwjAUK6jg0H2AnvoDm61r1_Ysihcvogd3GVXeRmWr0m6H7est6NkQCCQhBKEVJSmlRG0O16K4pVQplQqVkZxMUKyEJIEZZyQXUxSFnkwEl2yOYu-fJIBxJiSP0PZ0xnenjcWm1TVgD3ULttOdeVnce2NrXPXjOOBH0_sOXDCWaFbpxkP80wVaH_aX3TExAFC-XRhyQ_k9k_0NPz6JNmg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MR brain image segmentation using fuzzy clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ock-Kyung Yoon ; Dong-Min Kwak ; Dong-Whee Kim ; Kil-Houm Park</creator><creatorcontrib>Ock-Kyung Yoon ; Dong-Min Kwak ; Dong-Whee Kim ; Kil-Houm Park</creatorcontrib><description>In anatomical aspects, magnetic resonance (MR) imaging offers more accurate information for medical examination than other medical images such as X-ray, ultrasonic and CT images. In this paper, an automated segmentation and lesion detection algorithm are proposed for axial MR brain images. The proposed segmentation algorithm consists of two steps in order to reduce computation time for classifying tissues. In the first step, the cerebrum region is extracted by using thresholding, morphological operation, and labeling algorithm. In the second step, white matter, gray matter, and cerebrospinal fluid in the cerebrum are detected using fuzzy c-means (FCM) algorithm. The new lesion detection algorithm uses anatomical knowledge and local symmetry. A symmetric measure is defined to quantify the normality of MRI slice, which is based on the number of pixels, moment invariants, and Fourier descriptors. The proposed method has been applied to forty normal and abnormal slices. The experimental results show that the proposed segmentation algorithm is appropriate for classifying a large amount of axial brain MR data, and also show that the proposed lesion detection algorithm is successful.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 9780780354067</identifier><identifier>ISBN: 0780354060</identifier><identifier>DOI: 10.1109/FUZZY.1999.793060</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Brain ; Detection algorithms ; Image segmentation ; Lesions ; Magnetic resonance ; Magnetic resonance imaging ; Optical imaging ; Ultrasonic imaging ; X-ray imaging</subject><ispartof>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315), 1999, Vol.2, p.853-857 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/793060$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,4049,4050,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/793060$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ock-Kyung Yoon</creatorcontrib><creatorcontrib>Dong-Min Kwak</creatorcontrib><creatorcontrib>Dong-Whee Kim</creatorcontrib><creatorcontrib>Kil-Houm Park</creatorcontrib><title>MR brain image segmentation using fuzzy clustering</title><title>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)</title><addtitle>FUZZY</addtitle><description>In anatomical aspects, magnetic resonance (MR) imaging offers more accurate information for medical examination than other medical images such as X-ray, ultrasonic and CT images. In this paper, an automated segmentation and lesion detection algorithm are proposed for axial MR brain images. The proposed segmentation algorithm consists of two steps in order to reduce computation time for classifying tissues. In the first step, the cerebrum region is extracted by using thresholding, morphological operation, and labeling algorithm. In the second step, white matter, gray matter, and cerebrospinal fluid in the cerebrum are detected using fuzzy c-means (FCM) algorithm. The new lesion detection algorithm uses anatomical knowledge and local symmetry. A symmetric measure is defined to quantify the normality of MRI slice, which is based on the number of pixels, moment invariants, and Fourier descriptors. The proposed method has been applied to forty normal and abnormal slices. The experimental results show that the proposed segmentation algorithm is appropriate for classifying a large amount of axial brain MR data, and also show that the proposed lesion detection algorithm is successful.</description><subject>Biomedical imaging</subject><subject>Brain</subject><subject>Detection algorithms</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Optical imaging</subject><subject>Ultrasonic imaging</subject><subject>X-ray imaging</subject><issn>1098-7584</issn><isbn>9780780354067</isbn><isbn>0780354060</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9TsEKwjAUK6jg0H2AnvoDm61r1_Ysihcvogd3GVXeRmWr0m6H7est6NkQCCQhBKEVJSmlRG0O16K4pVQplQqVkZxMUKyEJIEZZyQXUxSFnkwEl2yOYu-fJIBxJiSP0PZ0xnenjcWm1TVgD3ULttOdeVnce2NrXPXjOOBH0_sOXDCWaFbpxkP80wVaH_aX3TExAFC-XRhyQ_k9k_0NPz6JNmg</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Ock-Kyung Yoon</creator><creator>Dong-Min Kwak</creator><creator>Dong-Whee Kim</creator><creator>Kil-Houm Park</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>MR brain image segmentation using fuzzy clustering</title><author>Ock-Kyung Yoon ; Dong-Min Kwak ; Dong-Whee Kim ; Kil-Houm Park</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_7930603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biomedical imaging</topic><topic>Brain</topic><topic>Detection algorithms</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Optical imaging</topic><topic>Ultrasonic imaging</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Ock-Kyung Yoon</creatorcontrib><creatorcontrib>Dong-Min Kwak</creatorcontrib><creatorcontrib>Dong-Whee Kim</creatorcontrib><creatorcontrib>Kil-Houm Park</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ock-Kyung Yoon</au><au>Dong-Min Kwak</au><au>Dong-Whee Kim</au><au>Kil-Houm Park</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MR brain image segmentation using fuzzy clustering</atitle><btitle>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)</btitle><stitle>FUZZY</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>853</spage><epage>857 vol.2</epage><pages>853-857 vol.2</pages><issn>1098-7584</issn><isbn>9780780354067</isbn><isbn>0780354060</isbn><abstract>In anatomical aspects, magnetic resonance (MR) imaging offers more accurate information for medical examination than other medical images such as X-ray, ultrasonic and CT images. In this paper, an automated segmentation and lesion detection algorithm are proposed for axial MR brain images. The proposed segmentation algorithm consists of two steps in order to reduce computation time for classifying tissues. In the first step, the cerebrum region is extracted by using thresholding, morphological operation, and labeling algorithm. In the second step, white matter, gray matter, and cerebrospinal fluid in the cerebrum are detected using fuzzy c-means (FCM) algorithm. The new lesion detection algorithm uses anatomical knowledge and local symmetry. A symmetric measure is defined to quantify the normality of MRI slice, which is based on the number of pixels, moment invariants, and Fourier descriptors. The proposed method has been applied to forty normal and abnormal slices. The experimental results show that the proposed segmentation algorithm is appropriate for classifying a large amount of axial brain MR data, and also show that the proposed lesion detection algorithm is successful.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.1999.793060</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7584 |
ispartof | FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315), 1999, Vol.2, p.853-857 vol.2 |
issn | 1098-7584 |
language | eng |
recordid | cdi_ieee_primary_793060 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biomedical imaging Brain Detection algorithms Image segmentation Lesions Magnetic resonance Magnetic resonance imaging Optical imaging Ultrasonic imaging X-ray imaging |
title | MR brain image segmentation using fuzzy clustering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MR%20brain%20image%20segmentation%20using%20fuzzy%20clustering&rft.btitle=FUZZ-IEEE'99.%201999%20IEEE%20International%20Fuzzy%20Systems.%20Conference%20Proceedings%20(Cat.%20No.99CH36315)&rft.au=Ock-Kyung%20Yoon&rft.date=1999&rft.volume=2&rft.spage=853&rft.epage=857%20vol.2&rft.pages=853-857%20vol.2&rft.issn=1098-7584&rft.isbn=9780780354067&rft.isbn_list=0780354060&rft_id=info:doi/10.1109/FUZZY.1999.793060&rft_dat=%3Cieee_6IE%3E793060%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_7930603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=793060&rfr_iscdi=true |