Loading…

MR brain image segmentation using fuzzy clustering

In anatomical aspects, magnetic resonance (MR) imaging offers more accurate information for medical examination than other medical images such as X-ray, ultrasonic and CT images. In this paper, an automated segmentation and lesion detection algorithm are proposed for axial MR brain images. The propo...

Full description

Saved in:
Bibliographic Details
Main Authors: Ock-Kyung Yoon, Dong-Min Kwak, Dong-Whee Kim, Kil-Houm Park
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 857 vol.2
container_issue
container_start_page 853
container_title
container_volume 2
creator Ock-Kyung Yoon
Dong-Min Kwak
Dong-Whee Kim
Kil-Houm Park
description In anatomical aspects, magnetic resonance (MR) imaging offers more accurate information for medical examination than other medical images such as X-ray, ultrasonic and CT images. In this paper, an automated segmentation and lesion detection algorithm are proposed for axial MR brain images. The proposed segmentation algorithm consists of two steps in order to reduce computation time for classifying tissues. In the first step, the cerebrum region is extracted by using thresholding, morphological operation, and labeling algorithm. In the second step, white matter, gray matter, and cerebrospinal fluid in the cerebrum are detected using fuzzy c-means (FCM) algorithm. The new lesion detection algorithm uses anatomical knowledge and local symmetry. A symmetric measure is defined to quantify the normality of MRI slice, which is based on the number of pixels, moment invariants, and Fourier descriptors. The proposed method has been applied to forty normal and abnormal slices. The experimental results show that the proposed segmentation algorithm is appropriate for classifying a large amount of axial brain MR data, and also show that the proposed lesion detection algorithm is successful.
doi_str_mv 10.1109/FUZZY.1999.793060
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_793060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>793060</ieee_id><sourcerecordid>793060</sourcerecordid><originalsourceid>FETCH-ieee_primary_7930603</originalsourceid><addsrcrecordid>eNp9TsEKwjAUK6jg0H2AnvoDm61r1_Ysihcvogd3GVXeRmWr0m6H7est6NkQCCQhBKEVJSmlRG0O16K4pVQplQqVkZxMUKyEJIEZZyQXUxSFnkwEl2yOYu-fJIBxJiSP0PZ0xnenjcWm1TVgD3ULttOdeVnce2NrXPXjOOBH0_sOXDCWaFbpxkP80wVaH_aX3TExAFC-XRhyQ_k9k_0NPz6JNmg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MR brain image segmentation using fuzzy clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ock-Kyung Yoon ; Dong-Min Kwak ; Dong-Whee Kim ; Kil-Houm Park</creator><creatorcontrib>Ock-Kyung Yoon ; Dong-Min Kwak ; Dong-Whee Kim ; Kil-Houm Park</creatorcontrib><description>In anatomical aspects, magnetic resonance (MR) imaging offers more accurate information for medical examination than other medical images such as X-ray, ultrasonic and CT images. In this paper, an automated segmentation and lesion detection algorithm are proposed for axial MR brain images. The proposed segmentation algorithm consists of two steps in order to reduce computation time for classifying tissues. In the first step, the cerebrum region is extracted by using thresholding, morphological operation, and labeling algorithm. In the second step, white matter, gray matter, and cerebrospinal fluid in the cerebrum are detected using fuzzy c-means (FCM) algorithm. The new lesion detection algorithm uses anatomical knowledge and local symmetry. A symmetric measure is defined to quantify the normality of MRI slice, which is based on the number of pixels, moment invariants, and Fourier descriptors. The proposed method has been applied to forty normal and abnormal slices. The experimental results show that the proposed segmentation algorithm is appropriate for classifying a large amount of axial brain MR data, and also show that the proposed lesion detection algorithm is successful.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 9780780354067</identifier><identifier>ISBN: 0780354060</identifier><identifier>DOI: 10.1109/FUZZY.1999.793060</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Brain ; Detection algorithms ; Image segmentation ; Lesions ; Magnetic resonance ; Magnetic resonance imaging ; Optical imaging ; Ultrasonic imaging ; X-ray imaging</subject><ispartof>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315), 1999, Vol.2, p.853-857 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/793060$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,4049,4050,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/793060$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ock-Kyung Yoon</creatorcontrib><creatorcontrib>Dong-Min Kwak</creatorcontrib><creatorcontrib>Dong-Whee Kim</creatorcontrib><creatorcontrib>Kil-Houm Park</creatorcontrib><title>MR brain image segmentation using fuzzy clustering</title><title>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)</title><addtitle>FUZZY</addtitle><description>In anatomical aspects, magnetic resonance (MR) imaging offers more accurate information for medical examination than other medical images such as X-ray, ultrasonic and CT images. In this paper, an automated segmentation and lesion detection algorithm are proposed for axial MR brain images. The proposed segmentation algorithm consists of two steps in order to reduce computation time for classifying tissues. In the first step, the cerebrum region is extracted by using thresholding, morphological operation, and labeling algorithm. In the second step, white matter, gray matter, and cerebrospinal fluid in the cerebrum are detected using fuzzy c-means (FCM) algorithm. The new lesion detection algorithm uses anatomical knowledge and local symmetry. A symmetric measure is defined to quantify the normality of MRI slice, which is based on the number of pixels, moment invariants, and Fourier descriptors. The proposed method has been applied to forty normal and abnormal slices. The experimental results show that the proposed segmentation algorithm is appropriate for classifying a large amount of axial brain MR data, and also show that the proposed lesion detection algorithm is successful.</description><subject>Biomedical imaging</subject><subject>Brain</subject><subject>Detection algorithms</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Optical imaging</subject><subject>Ultrasonic imaging</subject><subject>X-ray imaging</subject><issn>1098-7584</issn><isbn>9780780354067</isbn><isbn>0780354060</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9TsEKwjAUK6jg0H2AnvoDm61r1_Ysihcvogd3GVXeRmWr0m6H7est6NkQCCQhBKEVJSmlRG0O16K4pVQplQqVkZxMUKyEJIEZZyQXUxSFnkwEl2yOYu-fJIBxJiSP0PZ0xnenjcWm1TVgD3ULttOdeVnce2NrXPXjOOBH0_sOXDCWaFbpxkP80wVaH_aX3TExAFC-XRhyQ_k9k_0NPz6JNmg</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Ock-Kyung Yoon</creator><creator>Dong-Min Kwak</creator><creator>Dong-Whee Kim</creator><creator>Kil-Houm Park</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>MR brain image segmentation using fuzzy clustering</title><author>Ock-Kyung Yoon ; Dong-Min Kwak ; Dong-Whee Kim ; Kil-Houm Park</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_7930603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biomedical imaging</topic><topic>Brain</topic><topic>Detection algorithms</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Optical imaging</topic><topic>Ultrasonic imaging</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Ock-Kyung Yoon</creatorcontrib><creatorcontrib>Dong-Min Kwak</creatorcontrib><creatorcontrib>Dong-Whee Kim</creatorcontrib><creatorcontrib>Kil-Houm Park</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ock-Kyung Yoon</au><au>Dong-Min Kwak</au><au>Dong-Whee Kim</au><au>Kil-Houm Park</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MR brain image segmentation using fuzzy clustering</atitle><btitle>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)</btitle><stitle>FUZZY</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>853</spage><epage>857 vol.2</epage><pages>853-857 vol.2</pages><issn>1098-7584</issn><isbn>9780780354067</isbn><isbn>0780354060</isbn><abstract>In anatomical aspects, magnetic resonance (MR) imaging offers more accurate information for medical examination than other medical images such as X-ray, ultrasonic and CT images. In this paper, an automated segmentation and lesion detection algorithm are proposed for axial MR brain images. The proposed segmentation algorithm consists of two steps in order to reduce computation time for classifying tissues. In the first step, the cerebrum region is extracted by using thresholding, morphological operation, and labeling algorithm. In the second step, white matter, gray matter, and cerebrospinal fluid in the cerebrum are detected using fuzzy c-means (FCM) algorithm. The new lesion detection algorithm uses anatomical knowledge and local symmetry. A symmetric measure is defined to quantify the normality of MRI slice, which is based on the number of pixels, moment invariants, and Fourier descriptors. The proposed method has been applied to forty normal and abnormal slices. The experimental results show that the proposed segmentation algorithm is appropriate for classifying a large amount of axial brain MR data, and also show that the proposed lesion detection algorithm is successful.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.1999.793060</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315), 1999, Vol.2, p.853-857 vol.2
issn 1098-7584
language eng
recordid cdi_ieee_primary_793060
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Brain
Detection algorithms
Image segmentation
Lesions
Magnetic resonance
Magnetic resonance imaging
Optical imaging
Ultrasonic imaging
X-ray imaging
title MR brain image segmentation using fuzzy clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MR%20brain%20image%20segmentation%20using%20fuzzy%20clustering&rft.btitle=FUZZ-IEEE'99.%201999%20IEEE%20International%20Fuzzy%20Systems.%20Conference%20Proceedings%20(Cat.%20No.99CH36315)&rft.au=Ock-Kyung%20Yoon&rft.date=1999&rft.volume=2&rft.spage=853&rft.epage=857%20vol.2&rft.pages=853-857%20vol.2&rft.issn=1098-7584&rft.isbn=9780780354067&rft.isbn_list=0780354060&rft_id=info:doi/10.1109/FUZZY.1999.793060&rft_dat=%3Cieee_6IE%3E793060%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_7930603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=793060&rfr_iscdi=true