Loading…
A Generative Model of Urban Activities from Cellular Data
Activity-based travel demand models are becoming essential tools used in transportation planning and regional development scenario evaluation. They describe travel itineraries of individual travelers, namely, what activities they are participating in, when they perform these activities, and how they...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2018-06, Vol.19 (6), p.1682-1696 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23 |
container_end_page | 1696 |
container_issue | 6 |
container_start_page | 1682 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 19 |
creator | Yin, Mogeng Sheehan, Madeleine Feygin, Sidney Paiement, Jean-Francois Pozdnoukhov, Alexei |
description | Activity-based travel demand models are becoming essential tools used in transportation planning and regional development scenario evaluation. They describe travel itineraries of individual travelers, namely, what activities they are participating in, when they perform these activities, and how they choose to travel to the activity locales. However, data collection for activity-based models is performed through travel surveys that are infrequent, expensive, and reflect the changes in transportation with significant delays. Thanks to the ubiquitous cell phone data, we see an opportunity to substantially complement these surveys with data extracted from network carrier mobile phone usage logs, such as call detail records (CDRs). In this paper, we develop input-output hidden Markov models to infer travelers' activity patterns from CDRs. We apply the model to the data collected by a major network carrier serving millions of users in the San Francisco Bay Area. Our approach delivers an end-to-end actionable solution to the practitioners in the form of a modular and interpretable activity-based travel demand model. It is experimentally validated with three independent data sources: aggregated statistics from travel surveys, a set of collected ground truth activities, and the results of a traffic micro-simulation informed with the travel plans synthesized from the developed generative model. |
doi_str_mv | 10.1109/TITS.2017.2695438 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7932990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7932990</ieee_id><sourcerecordid>2048169866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N5KubY6m2FioebM8hm0xgy7Zbk63gv3eXFk8zvDzvDDyEPAKbADDzslltviacwXTCtVFSlFdkBEqVBWOgr4edy8IwxW7JXc67PpUKYETMjC7xgMl19Q_SjzZgQ9tIt6lyBzrzfVp3NWYaU7unc2yaU-MSfXWduyc30TUZHy5zTLaLt838vVh_Llfz2brwQkJXyMprgFj6gIZJGRWIAOh4CCEarrlWotIlVlPPAkiU2gfPQDhk3HHpuBiT5_PdY2q_T5g7u2tP6dC_tJzJErQpte4pOFM-tTknjPaY6r1LvxaYHQzZwZAdDNmLob7zdO7UiPjPT43gxjDxB6sIYJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2048169866</pqid></control><display><type>article</type><title>A Generative Model of Urban Activities from Cellular Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yin, Mogeng ; Sheehan, Madeleine ; Feygin, Sidney ; Paiement, Jean-Francois ; Pozdnoukhov, Alexei</creator><creatorcontrib>Yin, Mogeng ; Sheehan, Madeleine ; Feygin, Sidney ; Paiement, Jean-Francois ; Pozdnoukhov, Alexei</creatorcontrib><description>Activity-based travel demand models are becoming essential tools used in transportation planning and regional development scenario evaluation. They describe travel itineraries of individual travelers, namely, what activities they are participating in, when they perform these activities, and how they choose to travel to the activity locales. However, data collection for activity-based models is performed through travel surveys that are infrequent, expensive, and reflect the changes in transportation with significant delays. Thanks to the ubiquitous cell phone data, we see an opportunity to substantially complement these surveys with data extracted from network carrier mobile phone usage logs, such as call detail records (CDRs). In this paper, we develop input-output hidden Markov models to infer travelers' activity patterns from CDRs. We apply the model to the data collected by a major network carrier serving millions of users in the San Francisco Bay Area. Our approach delivers an end-to-end actionable solution to the practitioners in the form of a modular and interpretable activity-based travel demand model. It is experimentally validated with three independent data sources: aggregated statistics from travel surveys, a set of collected ground truth activities, and the results of a traffic micro-simulation informed with the travel plans synthesized from the developed generative model.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2017.2695438</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; activity-based models ; Analytical models ; Cellular data ; Computer simulation ; Context modeling ; Data acquisition ; Data models ; demand forecasting ; generative models ; Global Positioning System ; Ground truth ; Hidden Markov models ; latent variables ; Markov chains ; Regional analysis ; Regional development ; Regional planning ; Traffic models ; Traffic planning ; Transportation ; Transportation planning ; Travel ; Travel demand ; Trip surveys ; Wireless networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2018-06, Vol.19 (6), p.1682-1696</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23</citedby><cites>FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23</cites><orcidid>0000-0002-1735-5751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7932990$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yin, Mogeng</creatorcontrib><creatorcontrib>Sheehan, Madeleine</creatorcontrib><creatorcontrib>Feygin, Sidney</creatorcontrib><creatorcontrib>Paiement, Jean-Francois</creatorcontrib><creatorcontrib>Pozdnoukhov, Alexei</creatorcontrib><title>A Generative Model of Urban Activities from Cellular Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Activity-based travel demand models are becoming essential tools used in transportation planning and regional development scenario evaluation. They describe travel itineraries of individual travelers, namely, what activities they are participating in, when they perform these activities, and how they choose to travel to the activity locales. However, data collection for activity-based models is performed through travel surveys that are infrequent, expensive, and reflect the changes in transportation with significant delays. Thanks to the ubiquitous cell phone data, we see an opportunity to substantially complement these surveys with data extracted from network carrier mobile phone usage logs, such as call detail records (CDRs). In this paper, we develop input-output hidden Markov models to infer travelers' activity patterns from CDRs. We apply the model to the data collected by a major network carrier serving millions of users in the San Francisco Bay Area. Our approach delivers an end-to-end actionable solution to the practitioners in the form of a modular and interpretable activity-based travel demand model. It is experimentally validated with three independent data sources: aggregated statistics from travel surveys, a set of collected ground truth activities, and the results of a traffic micro-simulation informed with the travel plans synthesized from the developed generative model.</description><subject>Activity recognition</subject><subject>activity-based models</subject><subject>Analytical models</subject><subject>Cellular data</subject><subject>Computer simulation</subject><subject>Context modeling</subject><subject>Data acquisition</subject><subject>Data models</subject><subject>demand forecasting</subject><subject>generative models</subject><subject>Global Positioning System</subject><subject>Ground truth</subject><subject>Hidden Markov models</subject><subject>latent variables</subject><subject>Markov chains</subject><subject>Regional analysis</subject><subject>Regional development</subject><subject>Regional planning</subject><subject>Traffic models</subject><subject>Traffic planning</subject><subject>Transportation</subject><subject>Transportation planning</subject><subject>Travel</subject><subject>Travel demand</subject><subject>Trip surveys</subject><subject>Wireless networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N5KubY6m2FioebM8hm0xgy7Zbk63gv3eXFk8zvDzvDDyEPAKbADDzslltviacwXTCtVFSlFdkBEqVBWOgr4edy8IwxW7JXc67PpUKYETMjC7xgMl19Q_SjzZgQ9tIt6lyBzrzfVp3NWYaU7unc2yaU-MSfXWduyc30TUZHy5zTLaLt838vVh_Llfz2brwQkJXyMprgFj6gIZJGRWIAOh4CCEarrlWotIlVlPPAkiU2gfPQDhk3HHpuBiT5_PdY2q_T5g7u2tP6dC_tJzJErQpte4pOFM-tTknjPaY6r1LvxaYHQzZwZAdDNmLob7zdO7UiPjPT43gxjDxB6sIYJc</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Yin, Mogeng</creator><creator>Sheehan, Madeleine</creator><creator>Feygin, Sidney</creator><creator>Paiement, Jean-Francois</creator><creator>Pozdnoukhov, Alexei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1735-5751</orcidid></search><sort><creationdate>20180601</creationdate><title>A Generative Model of Urban Activities from Cellular Data</title><author>Yin, Mogeng ; Sheehan, Madeleine ; Feygin, Sidney ; Paiement, Jean-Francois ; Pozdnoukhov, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activity recognition</topic><topic>activity-based models</topic><topic>Analytical models</topic><topic>Cellular data</topic><topic>Computer simulation</topic><topic>Context modeling</topic><topic>Data acquisition</topic><topic>Data models</topic><topic>demand forecasting</topic><topic>generative models</topic><topic>Global Positioning System</topic><topic>Ground truth</topic><topic>Hidden Markov models</topic><topic>latent variables</topic><topic>Markov chains</topic><topic>Regional analysis</topic><topic>Regional development</topic><topic>Regional planning</topic><topic>Traffic models</topic><topic>Traffic planning</topic><topic>Transportation</topic><topic>Transportation planning</topic><topic>Travel</topic><topic>Travel demand</topic><topic>Trip surveys</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Mogeng</creatorcontrib><creatorcontrib>Sheehan, Madeleine</creatorcontrib><creatorcontrib>Feygin, Sidney</creatorcontrib><creatorcontrib>Paiement, Jean-Francois</creatorcontrib><creatorcontrib>Pozdnoukhov, Alexei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Mogeng</au><au>Sheehan, Madeleine</au><au>Feygin, Sidney</au><au>Paiement, Jean-Francois</au><au>Pozdnoukhov, Alexei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generative Model of Urban Activities from Cellular Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>19</volume><issue>6</issue><spage>1682</spage><epage>1696</epage><pages>1682-1696</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Activity-based travel demand models are becoming essential tools used in transportation planning and regional development scenario evaluation. They describe travel itineraries of individual travelers, namely, what activities they are participating in, when they perform these activities, and how they choose to travel to the activity locales. However, data collection for activity-based models is performed through travel surveys that are infrequent, expensive, and reflect the changes in transportation with significant delays. Thanks to the ubiquitous cell phone data, we see an opportunity to substantially complement these surveys with data extracted from network carrier mobile phone usage logs, such as call detail records (CDRs). In this paper, we develop input-output hidden Markov models to infer travelers' activity patterns from CDRs. We apply the model to the data collected by a major network carrier serving millions of users in the San Francisco Bay Area. Our approach delivers an end-to-end actionable solution to the practitioners in the form of a modular and interpretable activity-based travel demand model. It is experimentally validated with three independent data sources: aggregated statistics from travel surveys, a set of collected ground truth activities, and the results of a traffic micro-simulation informed with the travel plans synthesized from the developed generative model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2017.2695438</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1735-5751</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2018-06, Vol.19 (6), p.1682-1696 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_7932990 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Activity recognition activity-based models Analytical models Cellular data Computer simulation Context modeling Data acquisition Data models demand forecasting generative models Global Positioning System Ground truth Hidden Markov models latent variables Markov chains Regional analysis Regional development Regional planning Traffic models Traffic planning Transportation Transportation planning Travel Travel demand Trip surveys Wireless networks |
title | A Generative Model of Urban Activities from Cellular Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generative%20Model%20of%20Urban%20Activities%20from%20Cellular%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Yin,%20Mogeng&rft.date=2018-06-01&rft.volume=19&rft.issue=6&rft.spage=1682&rft.epage=1696&rft.pages=1682-1696&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2017.2695438&rft_dat=%3Cproquest_ieee_%3E2048169866%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2048169866&rft_id=info:pmid/&rft_ieee_id=7932990&rfr_iscdi=true |