Loading…

A Generative Model of Urban Activities from Cellular Data

Activity-based travel demand models are becoming essential tools used in transportation planning and regional development scenario evaluation. They describe travel itineraries of individual travelers, namely, what activities they are participating in, when they perform these activities, and how they...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2018-06, Vol.19 (6), p.1682-1696
Main Authors: Yin, Mogeng, Sheehan, Madeleine, Feygin, Sidney, Paiement, Jean-Francois, Pozdnoukhov, Alexei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23
cites cdi_FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23
container_end_page 1696
container_issue 6
container_start_page 1682
container_title IEEE transactions on intelligent transportation systems
container_volume 19
creator Yin, Mogeng
Sheehan, Madeleine
Feygin, Sidney
Paiement, Jean-Francois
Pozdnoukhov, Alexei
description Activity-based travel demand models are becoming essential tools used in transportation planning and regional development scenario evaluation. They describe travel itineraries of individual travelers, namely, what activities they are participating in, when they perform these activities, and how they choose to travel to the activity locales. However, data collection for activity-based models is performed through travel surveys that are infrequent, expensive, and reflect the changes in transportation with significant delays. Thanks to the ubiquitous cell phone data, we see an opportunity to substantially complement these surveys with data extracted from network carrier mobile phone usage logs, such as call detail records (CDRs). In this paper, we develop input-output hidden Markov models to infer travelers' activity patterns from CDRs. We apply the model to the data collected by a major network carrier serving millions of users in the San Francisco Bay Area. Our approach delivers an end-to-end actionable solution to the practitioners in the form of a modular and interpretable activity-based travel demand model. It is experimentally validated with three independent data sources: aggregated statistics from travel surveys, a set of collected ground truth activities, and the results of a traffic micro-simulation informed with the travel plans synthesized from the developed generative model.
doi_str_mv 10.1109/TITS.2017.2695438
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7932990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7932990</ieee_id><sourcerecordid>2048169866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N5KubY6m2FioebM8hm0xgy7Zbk63gv3eXFk8zvDzvDDyEPAKbADDzslltviacwXTCtVFSlFdkBEqVBWOgr4edy8IwxW7JXc67PpUKYETMjC7xgMl19Q_SjzZgQ9tIt6lyBzrzfVp3NWYaU7unc2yaU-MSfXWduyc30TUZHy5zTLaLt838vVh_Llfz2brwQkJXyMprgFj6gIZJGRWIAOh4CCEarrlWotIlVlPPAkiU2gfPQDhk3HHpuBiT5_PdY2q_T5g7u2tP6dC_tJzJErQpte4pOFM-tTknjPaY6r1LvxaYHQzZwZAdDNmLob7zdO7UiPjPT43gxjDxB6sIYJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2048169866</pqid></control><display><type>article</type><title>A Generative Model of Urban Activities from Cellular Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yin, Mogeng ; Sheehan, Madeleine ; Feygin, Sidney ; Paiement, Jean-Francois ; Pozdnoukhov, Alexei</creator><creatorcontrib>Yin, Mogeng ; Sheehan, Madeleine ; Feygin, Sidney ; Paiement, Jean-Francois ; Pozdnoukhov, Alexei</creatorcontrib><description>Activity-based travel demand models are becoming essential tools used in transportation planning and regional development scenario evaluation. They describe travel itineraries of individual travelers, namely, what activities they are participating in, when they perform these activities, and how they choose to travel to the activity locales. However, data collection for activity-based models is performed through travel surveys that are infrequent, expensive, and reflect the changes in transportation with significant delays. Thanks to the ubiquitous cell phone data, we see an opportunity to substantially complement these surveys with data extracted from network carrier mobile phone usage logs, such as call detail records (CDRs). In this paper, we develop input-output hidden Markov models to infer travelers' activity patterns from CDRs. We apply the model to the data collected by a major network carrier serving millions of users in the San Francisco Bay Area. Our approach delivers an end-to-end actionable solution to the practitioners in the form of a modular and interpretable activity-based travel demand model. It is experimentally validated with three independent data sources: aggregated statistics from travel surveys, a set of collected ground truth activities, and the results of a traffic micro-simulation informed with the travel plans synthesized from the developed generative model.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2017.2695438</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; activity-based models ; Analytical models ; Cellular data ; Computer simulation ; Context modeling ; Data acquisition ; Data models ; demand forecasting ; generative models ; Global Positioning System ; Ground truth ; Hidden Markov models ; latent variables ; Markov chains ; Regional analysis ; Regional development ; Regional planning ; Traffic models ; Traffic planning ; Transportation ; Transportation planning ; Travel ; Travel demand ; Trip surveys ; Wireless networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2018-06, Vol.19 (6), p.1682-1696</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23</citedby><cites>FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23</cites><orcidid>0000-0002-1735-5751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7932990$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yin, Mogeng</creatorcontrib><creatorcontrib>Sheehan, Madeleine</creatorcontrib><creatorcontrib>Feygin, Sidney</creatorcontrib><creatorcontrib>Paiement, Jean-Francois</creatorcontrib><creatorcontrib>Pozdnoukhov, Alexei</creatorcontrib><title>A Generative Model of Urban Activities from Cellular Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Activity-based travel demand models are becoming essential tools used in transportation planning and regional development scenario evaluation. They describe travel itineraries of individual travelers, namely, what activities they are participating in, when they perform these activities, and how they choose to travel to the activity locales. However, data collection for activity-based models is performed through travel surveys that are infrequent, expensive, and reflect the changes in transportation with significant delays. Thanks to the ubiquitous cell phone data, we see an opportunity to substantially complement these surveys with data extracted from network carrier mobile phone usage logs, such as call detail records (CDRs). In this paper, we develop input-output hidden Markov models to infer travelers' activity patterns from CDRs. We apply the model to the data collected by a major network carrier serving millions of users in the San Francisco Bay Area. Our approach delivers an end-to-end actionable solution to the practitioners in the form of a modular and interpretable activity-based travel demand model. It is experimentally validated with three independent data sources: aggregated statistics from travel surveys, a set of collected ground truth activities, and the results of a traffic micro-simulation informed with the travel plans synthesized from the developed generative model.</description><subject>Activity recognition</subject><subject>activity-based models</subject><subject>Analytical models</subject><subject>Cellular data</subject><subject>Computer simulation</subject><subject>Context modeling</subject><subject>Data acquisition</subject><subject>Data models</subject><subject>demand forecasting</subject><subject>generative models</subject><subject>Global Positioning System</subject><subject>Ground truth</subject><subject>Hidden Markov models</subject><subject>latent variables</subject><subject>Markov chains</subject><subject>Regional analysis</subject><subject>Regional development</subject><subject>Regional planning</subject><subject>Traffic models</subject><subject>Traffic planning</subject><subject>Transportation</subject><subject>Transportation planning</subject><subject>Travel</subject><subject>Travel demand</subject><subject>Trip surveys</subject><subject>Wireless networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N5KubY6m2FioebM8hm0xgy7Zbk63gv3eXFk8zvDzvDDyEPAKbADDzslltviacwXTCtVFSlFdkBEqVBWOgr4edy8IwxW7JXc67PpUKYETMjC7xgMl19Q_SjzZgQ9tIt6lyBzrzfVp3NWYaU7unc2yaU-MSfXWduyc30TUZHy5zTLaLt838vVh_Llfz2brwQkJXyMprgFj6gIZJGRWIAOh4CCEarrlWotIlVlPPAkiU2gfPQDhk3HHpuBiT5_PdY2q_T5g7u2tP6dC_tJzJErQpte4pOFM-tTknjPaY6r1LvxaYHQzZwZAdDNmLob7zdO7UiPjPT43gxjDxB6sIYJc</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Yin, Mogeng</creator><creator>Sheehan, Madeleine</creator><creator>Feygin, Sidney</creator><creator>Paiement, Jean-Francois</creator><creator>Pozdnoukhov, Alexei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1735-5751</orcidid></search><sort><creationdate>20180601</creationdate><title>A Generative Model of Urban Activities from Cellular Data</title><author>Yin, Mogeng ; Sheehan, Madeleine ; Feygin, Sidney ; Paiement, Jean-Francois ; Pozdnoukhov, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activity recognition</topic><topic>activity-based models</topic><topic>Analytical models</topic><topic>Cellular data</topic><topic>Computer simulation</topic><topic>Context modeling</topic><topic>Data acquisition</topic><topic>Data models</topic><topic>demand forecasting</topic><topic>generative models</topic><topic>Global Positioning System</topic><topic>Ground truth</topic><topic>Hidden Markov models</topic><topic>latent variables</topic><topic>Markov chains</topic><topic>Regional analysis</topic><topic>Regional development</topic><topic>Regional planning</topic><topic>Traffic models</topic><topic>Traffic planning</topic><topic>Transportation</topic><topic>Transportation planning</topic><topic>Travel</topic><topic>Travel demand</topic><topic>Trip surveys</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Mogeng</creatorcontrib><creatorcontrib>Sheehan, Madeleine</creatorcontrib><creatorcontrib>Feygin, Sidney</creatorcontrib><creatorcontrib>Paiement, Jean-Francois</creatorcontrib><creatorcontrib>Pozdnoukhov, Alexei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Mogeng</au><au>Sheehan, Madeleine</au><au>Feygin, Sidney</au><au>Paiement, Jean-Francois</au><au>Pozdnoukhov, Alexei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generative Model of Urban Activities from Cellular Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>19</volume><issue>6</issue><spage>1682</spage><epage>1696</epage><pages>1682-1696</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Activity-based travel demand models are becoming essential tools used in transportation planning and regional development scenario evaluation. They describe travel itineraries of individual travelers, namely, what activities they are participating in, when they perform these activities, and how they choose to travel to the activity locales. However, data collection for activity-based models is performed through travel surveys that are infrequent, expensive, and reflect the changes in transportation with significant delays. Thanks to the ubiquitous cell phone data, we see an opportunity to substantially complement these surveys with data extracted from network carrier mobile phone usage logs, such as call detail records (CDRs). In this paper, we develop input-output hidden Markov models to infer travelers' activity patterns from CDRs. We apply the model to the data collected by a major network carrier serving millions of users in the San Francisco Bay Area. Our approach delivers an end-to-end actionable solution to the practitioners in the form of a modular and interpretable activity-based travel demand model. It is experimentally validated with three independent data sources: aggregated statistics from travel surveys, a set of collected ground truth activities, and the results of a traffic micro-simulation informed with the travel plans synthesized from the developed generative model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2017.2695438</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1735-5751</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2018-06, Vol.19 (6), p.1682-1696
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_7932990
source IEEE Electronic Library (IEL) Journals
subjects Activity recognition
activity-based models
Analytical models
Cellular data
Computer simulation
Context modeling
Data acquisition
Data models
demand forecasting
generative models
Global Positioning System
Ground truth
Hidden Markov models
latent variables
Markov chains
Regional analysis
Regional development
Regional planning
Traffic models
Traffic planning
Transportation
Transportation planning
Travel
Travel demand
Trip surveys
Wireless networks
title A Generative Model of Urban Activities from Cellular Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generative%20Model%20of%20Urban%20Activities%20from%20Cellular%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Yin,%20Mogeng&rft.date=2018-06-01&rft.volume=19&rft.issue=6&rft.spage=1682&rft.epage=1696&rft.pages=1682-1696&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2017.2695438&rft_dat=%3Cproquest_ieee_%3E2048169866%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-4bc611f8cde9044f513d1ea2dddf9262653b68eb7c0d14e46cdc013ae02a24a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2048169866&rft_id=info:pmid/&rft_ieee_id=7932990&rfr_iscdi=true