Loading…
A survey on learner models in adaptive E-learning systems
E-learning became an omnipresent concept in modern education thanks to the rapid development of Information and Communication Technology for Education. Along with this exponential evolution, the learner plays a central role in both traditional and computer-assisted learning. Accordingly, the learner...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Hlioui, Fedia Alioui, Nadia Gargouri, Faiez |
description | E-learning became an omnipresent concept in modern education thanks to the rapid development of Information and Communication Technology for Education. Along with this exponential evolution, the learner plays a central role in both traditional and computer-assisted learning. Accordingly, the learner's individual differences have a remarkable potential to improve his/her performance and motivation. This is ensured by providing an adaptive learning support. The present paper presents a survey of learner modeling in adaptive E-learning systems while describing the main methods for extracting of the personalization parameters. The learner's modeling does not only interest researchers and developers, but also pedagogues, course' designer and tutors. |
doi_str_mv | 10.1109/AICCSA.2016.7945770 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7945770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7945770</ieee_id><sourcerecordid>7945770</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c872d32458ba9dfe8ad0aef75c2eb387c35b4fa5af6fe625b266cae68e2ae9803</originalsourceid><addsrcrecordid>eNotj8tKw0AUQEdBsNZ-QTfzA4l3ZjKvZQhVCwUX6rrcZO7ISJKWTCzk7wXt6iwOHDiMbQWUQoB_qvdN816XEoQpra-0tXDDNt46ocFDpSTALVtJYUShlYJ79pDzN4Dy0ukV8zXPP9OFFn4aeU84jTTx4RSozzyNHAOe53Qhviv-ZBq_eF7yTEN-ZHcR-0ybK9fs83n30bwWh7eXfVMfiiSsnovOWRmUrLRr0YdIDgMgRas7Sa1ytlO6rSJqjCaSkbqVxnRIxpFE8g7Umm3_u4mIjucpDTgtx-up-gUZJEhN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A survey on learner models in adaptive E-learning systems</title><source>IEEE Xplore All Conference Series</source><creator>Hlioui, Fedia ; Alioui, Nadia ; Gargouri, Faiez</creator><creatorcontrib>Hlioui, Fedia ; Alioui, Nadia ; Gargouri, Faiez</creatorcontrib><description>E-learning became an omnipresent concept in modern education thanks to the rapid development of Information and Communication Technology for Education. Along with this exponential evolution, the learner plays a central role in both traditional and computer-assisted learning. Accordingly, the learner's individual differences have a remarkable potential to improve his/her performance and motivation. This is ensured by providing an adaptive learning support. The present paper presents a survey of learner modeling in adaptive E-learning systems while describing the main methods for extracting of the personalization parameters. The learner's modeling does not only interest researchers and developers, but also pedagogues, course' designer and tutors.</description><identifier>EISSN: 2161-5330</identifier><identifier>EISBN: 9781509043200</identifier><identifier>EISBN: 1509043209</identifier><identifier>DOI: 10.1109/AICCSA.2016.7945770</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; adaptive E-learning system ; Adaptive systems ; Brain modeling ; Earner model ; Electronic learning ; learner behavior ; Lips ; personalization parameters ; Psychology</subject><ispartof>2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), 2016, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7945770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7945770$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hlioui, Fedia</creatorcontrib><creatorcontrib>Alioui, Nadia</creatorcontrib><creatorcontrib>Gargouri, Faiez</creatorcontrib><title>A survey on learner models in adaptive E-learning systems</title><title>2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)</title><addtitle>AICCSA</addtitle><description>E-learning became an omnipresent concept in modern education thanks to the rapid development of Information and Communication Technology for Education. Along with this exponential evolution, the learner plays a central role in both traditional and computer-assisted learning. Accordingly, the learner's individual differences have a remarkable potential to improve his/her performance and motivation. This is ensured by providing an adaptive learning support. The present paper presents a survey of learner modeling in adaptive E-learning systems while describing the main methods for extracting of the personalization parameters. The learner's modeling does not only interest researchers and developers, but also pedagogues, course' designer and tutors.</description><subject>Adaptation models</subject><subject>adaptive E-learning system</subject><subject>Adaptive systems</subject><subject>Brain modeling</subject><subject>Earner model</subject><subject>Electronic learning</subject><subject>learner behavior</subject><subject>Lips</subject><subject>personalization parameters</subject><subject>Psychology</subject><issn>2161-5330</issn><isbn>9781509043200</isbn><isbn>1509043209</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQEdBsNZ-QTfzA4l3ZjKvZQhVCwUX6rrcZO7ISJKWTCzk7wXt6iwOHDiMbQWUQoB_qvdN816XEoQpra-0tXDDNt46ocFDpSTALVtJYUShlYJ79pDzN4Dy0ukV8zXPP9OFFn4aeU84jTTx4RSozzyNHAOe53Qhviv-ZBq_eF7yTEN-ZHcR-0ybK9fs83n30bwWh7eXfVMfiiSsnovOWRmUrLRr0YdIDgMgRas7Sa1ytlO6rSJqjCaSkbqVxnRIxpFE8g7Umm3_u4mIjucpDTgtx-up-gUZJEhN</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Hlioui, Fedia</creator><creator>Alioui, Nadia</creator><creator>Gargouri, Faiez</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201611</creationdate><title>A survey on learner models in adaptive E-learning systems</title><author>Hlioui, Fedia ; Alioui, Nadia ; Gargouri, Faiez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c872d32458ba9dfe8ad0aef75c2eb387c35b4fa5af6fe625b266cae68e2ae9803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation models</topic><topic>adaptive E-learning system</topic><topic>Adaptive systems</topic><topic>Brain modeling</topic><topic>Earner model</topic><topic>Electronic learning</topic><topic>learner behavior</topic><topic>Lips</topic><topic>personalization parameters</topic><topic>Psychology</topic><toplevel>online_resources</toplevel><creatorcontrib>Hlioui, Fedia</creatorcontrib><creatorcontrib>Alioui, Nadia</creatorcontrib><creatorcontrib>Gargouri, Faiez</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hlioui, Fedia</au><au>Alioui, Nadia</au><au>Gargouri, Faiez</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A survey on learner models in adaptive E-learning systems</atitle><btitle>2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)</btitle><stitle>AICCSA</stitle><date>2016-11</date><risdate>2016</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2161-5330</eissn><eisbn>9781509043200</eisbn><eisbn>1509043209</eisbn><abstract>E-learning became an omnipresent concept in modern education thanks to the rapid development of Information and Communication Technology for Education. Along with this exponential evolution, the learner plays a central role in both traditional and computer-assisted learning. Accordingly, the learner's individual differences have a remarkable potential to improve his/her performance and motivation. This is ensured by providing an adaptive learning support. The present paper presents a survey of learner modeling in adaptive E-learning systems while describing the main methods for extracting of the personalization parameters. The learner's modeling does not only interest researchers and developers, but also pedagogues, course' designer and tutors.</abstract><pub>IEEE</pub><doi>10.1109/AICCSA.2016.7945770</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-5330 |
ispartof | 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), 2016, p.1-7 |
issn | 2161-5330 |
language | eng |
recordid | cdi_ieee_primary_7945770 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models adaptive E-learning system Adaptive systems Brain modeling Earner model Electronic learning learner behavior Lips personalization parameters Psychology |
title | A survey on learner models in adaptive E-learning systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20survey%20on%20learner%20models%20in%20adaptive%20E-learning%20systems&rft.btitle=2016%20IEEE/ACS%2013th%20International%20Conference%20of%20Computer%20Systems%20and%20Applications%20(AICCSA)&rft.au=Hlioui,%20Fedia&rft.date=2016-11&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2161-5330&rft_id=info:doi/10.1109/AICCSA.2016.7945770&rft.eisbn=9781509043200&rft.eisbn_list=1509043209&rft_dat=%3Cieee_CHZPO%3E7945770%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-c872d32458ba9dfe8ad0aef75c2eb387c35b4fa5af6fe625b266cae68e2ae9803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7945770&rfr_iscdi=true |