Loading…

Robust Face Recognition With Kernelized Locality-Sensitive Group Sparsity Representation

In this paper, a novel joint sparse representation method is proposed for robust face recognition. We embed both group sparsity and kernelized locality-sensitive constraints into the framework of sparse representation. The group sparsity constraint is designed to utilize the grouped structure inform...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2017-10, Vol.26 (10), p.4661-4668
Main Authors: Tan, Shoubiao, Sun, Xi, Chan, Wentao, Qu, Lei, Shao, Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a novel joint sparse representation method is proposed for robust face recognition. We embed both group sparsity and kernelized locality-sensitive constraints into the framework of sparse representation. The group sparsity constraint is designed to utilize the grouped structure information in the training data. The local similarity between test and training data is measured in the kernel space instead of the Euclidian space. As a result, the embedded nonlinear information can be effectively captured, leading to a more discriminative representation. We show that, by integrating the kernelized local-sensitivity constraint and the group sparsity constraint, the embedded structure information can be better explored, and significant performance improvement can be achieved. On the one hand, experiments on the ORL, AR, extended Yale B, and LFW data sets verify the superiority of our method. On the other hand, experiments on two unconstrained data sets, the LFW and the IJB-A, show that the utilization of sparsity can improve recognition performance, especially on the data sets with large pose variation.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2017.2716180