Loading…

Deep Neural Network based learning and transferring mid-level audio features for acoustic scene classification

Deep Neural Network (DNN) based transfer learning has been shown to be effective in Visual Object Classification (VOC) for complementing the deficit of target domain training samples by adapting classifiers that have been pre-trained for other large-scaled DataBase (DB). Although there exists an abu...

Full description

Saved in:
Bibliographic Details
Main Authors: Seongkyu Mun, Suwon Shon, Wooil Kim, Han, David K., Hanseok Ko
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-ecd425d7b92fe5afd32a69a4678070d409f8a8af920294949d355b133b9c656a3
cites
container_end_page 800
container_issue
container_start_page 796
container_title
container_volume
creator Seongkyu Mun
Suwon Shon
Wooil Kim
Han, David K.
Hanseok Ko
description Deep Neural Network (DNN) based transfer learning has been shown to be effective in Visual Object Classification (VOC) for complementing the deficit of target domain training samples by adapting classifiers that have been pre-trained for other large-scaled DataBase (DB). Although there exists an abundance of acoustic data, it can also be said that datasets of specific acoustic scenes are sparse for training Acoustic Scene Classification (ASC) models. By exploiting VOC DNN's ability of learning beyond its pre-trained environments, this paper proposes DNN based transfer learning for ASC. Effectiveness of the proposed method is demonstrated on the database of IEEE DCASE Challenge 2016 Task 1 and home surveillance environment via representative experiments. Its improved performance is verified by comparing it to prominent conventional methods.
doi_str_mv 10.1109/ICASSP.2017.7952265
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7952265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7952265</ieee_id><sourcerecordid>7952265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ecd425d7b92fe5afd32a69a4678070d409f8a8af920294949d355b133b9c656a3</originalsourceid><addsrcrecordid>eNotkF1LwzAYhaMguE1_wW7yB1rz0TTNpcyPCUOFKXg33iZvJNqlI2kV_70Vx7l44Fw8cA4hS85Kzpm5elhdb7fPpWBcl9ooIWp1QuZcMcMqznV9SmZCalNww97OyTznD8ZYo6tmRuIN4oE-4pigmzB89-mTtpDR0Q4hxRDfKURHhwQxe0zpr9gHV3T4hR2F0YWeeoRhTJip7xMF2495CJZmixGp7SDn4IOFIfTxgpx56DJeHrkgr3e3L6t1sXm6n1ZsCisMHwq0rhLK6dYIjwq8kwJqA1WtG6aZq5jxDTTgjWDCVFOcVKrlUrbG1qoGuSDLf29AxN0hhT2kn93xG_kLbC1a5g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Neural Network based learning and transferring mid-level audio features for acoustic scene classification</title><source>IEEE Xplore All Conference Series</source><creator>Seongkyu Mun ; Suwon Shon ; Wooil Kim ; Han, David K. ; Hanseok Ko</creator><creatorcontrib>Seongkyu Mun ; Suwon Shon ; Wooil Kim ; Han, David K. ; Hanseok Ko</creatorcontrib><description>Deep Neural Network (DNN) based transfer learning has been shown to be effective in Visual Object Classification (VOC) for complementing the deficit of target domain training samples by adapting classifiers that have been pre-trained for other large-scaled DataBase (DB). Although there exists an abundance of acoustic data, it can also be said that datasets of specific acoustic scenes are sparse for training Acoustic Scene Classification (ASC) models. By exploiting VOC DNN's ability of learning beyond its pre-trained environments, this paper proposes DNN based transfer learning for ASC. Effectiveness of the proposed method is demonstrated on the database of IEEE DCASE Challenge 2016 Task 1 and home surveillance environment via representative experiments. Its improved performance is verified by comparing it to prominent conventional methods.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1509041176</identifier><identifier>EISBN: 9781509041176</identifier><identifier>DOI: 10.1109/ICASSP.2017.7952265</identifier><language>eng</language><publisher>IEEE</publisher><subject>acoustic scene classification ; Acoustics ; Conferences ; Convolution ; deep neural network ; mid-level feature ; Neural networks ; Speech recognition ; Surveillance ; Training ; Transfer learning</subject><ispartof>2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, p.796-800</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ecd425d7b92fe5afd32a69a4678070d409f8a8af920294949d355b133b9c656a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7952265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7952265$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seongkyu Mun</creatorcontrib><creatorcontrib>Suwon Shon</creatorcontrib><creatorcontrib>Wooil Kim</creatorcontrib><creatorcontrib>Han, David K.</creatorcontrib><creatorcontrib>Hanseok Ko</creatorcontrib><title>Deep Neural Network based learning and transferring mid-level audio features for acoustic scene classification</title><title>2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Deep Neural Network (DNN) based transfer learning has been shown to be effective in Visual Object Classification (VOC) for complementing the deficit of target domain training samples by adapting classifiers that have been pre-trained for other large-scaled DataBase (DB). Although there exists an abundance of acoustic data, it can also be said that datasets of specific acoustic scenes are sparse for training Acoustic Scene Classification (ASC) models. By exploiting VOC DNN's ability of learning beyond its pre-trained environments, this paper proposes DNN based transfer learning for ASC. Effectiveness of the proposed method is demonstrated on the database of IEEE DCASE Challenge 2016 Task 1 and home surveillance environment via representative experiments. Its improved performance is verified by comparing it to prominent conventional methods.</description><subject>acoustic scene classification</subject><subject>Acoustics</subject><subject>Conferences</subject><subject>Convolution</subject><subject>deep neural network</subject><subject>mid-level feature</subject><subject>Neural networks</subject><subject>Speech recognition</subject><subject>Surveillance</subject><subject>Training</subject><subject>Transfer learning</subject><issn>2379-190X</issn><isbn>1509041176</isbn><isbn>9781509041176</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkF1LwzAYhaMguE1_wW7yB1rz0TTNpcyPCUOFKXg33iZvJNqlI2kV_70Vx7l44Fw8cA4hS85Kzpm5elhdb7fPpWBcl9ooIWp1QuZcMcMqznV9SmZCalNww97OyTznD8ZYo6tmRuIN4oE-4pigmzB89-mTtpDR0Q4hxRDfKURHhwQxe0zpr9gHV3T4hR2F0YWeeoRhTJip7xMF2495CJZmixGp7SDn4IOFIfTxgpx56DJeHrkgr3e3L6t1sXm6n1ZsCisMHwq0rhLK6dYIjwq8kwJqA1WtG6aZq5jxDTTgjWDCVFOcVKrlUrbG1qoGuSDLf29AxN0hhT2kn93xG_kLbC1a5g</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Seongkyu Mun</creator><creator>Suwon Shon</creator><creator>Wooil Kim</creator><creator>Han, David K.</creator><creator>Hanseok Ko</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201703</creationdate><title>Deep Neural Network based learning and transferring mid-level audio features for acoustic scene classification</title><author>Seongkyu Mun ; Suwon Shon ; Wooil Kim ; Han, David K. ; Hanseok Ko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ecd425d7b92fe5afd32a69a4678070d409f8a8af920294949d355b133b9c656a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>acoustic scene classification</topic><topic>Acoustics</topic><topic>Conferences</topic><topic>Convolution</topic><topic>deep neural network</topic><topic>mid-level feature</topic><topic>Neural networks</topic><topic>Speech recognition</topic><topic>Surveillance</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Seongkyu Mun</creatorcontrib><creatorcontrib>Suwon Shon</creatorcontrib><creatorcontrib>Wooil Kim</creatorcontrib><creatorcontrib>Han, David K.</creatorcontrib><creatorcontrib>Hanseok Ko</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seongkyu Mun</au><au>Suwon Shon</au><au>Wooil Kim</au><au>Han, David K.</au><au>Hanseok Ko</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Neural Network based learning and transferring mid-level audio features for acoustic scene classification</atitle><btitle>2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2017-03</date><risdate>2017</risdate><spage>796</spage><epage>800</epage><pages>796-800</pages><eissn>2379-190X</eissn><eisbn>1509041176</eisbn><eisbn>9781509041176</eisbn><abstract>Deep Neural Network (DNN) based transfer learning has been shown to be effective in Visual Object Classification (VOC) for complementing the deficit of target domain training samples by adapting classifiers that have been pre-trained for other large-scaled DataBase (DB). Although there exists an abundance of acoustic data, it can also be said that datasets of specific acoustic scenes are sparse for training Acoustic Scene Classification (ASC) models. By exploiting VOC DNN's ability of learning beyond its pre-trained environments, this paper proposes DNN based transfer learning for ASC. Effectiveness of the proposed method is demonstrated on the database of IEEE DCASE Challenge 2016 Task 1 and home surveillance environment via representative experiments. Its improved performance is verified by comparing it to prominent conventional methods.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2017.7952265</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, p.796-800
issn 2379-190X
language eng
recordid cdi_ieee_primary_7952265
source IEEE Xplore All Conference Series
subjects acoustic scene classification
Acoustics
Conferences
Convolution
deep neural network
mid-level feature
Neural networks
Speech recognition
Surveillance
Training
Transfer learning
title Deep Neural Network based learning and transferring mid-level audio features for acoustic scene classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Neural%20Network%20based%20learning%20and%20transferring%20mid-level%20audio%20features%20for%20acoustic%20scene%20classification&rft.btitle=2017%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Seongkyu%20Mun&rft.date=2017-03&rft.spage=796&rft.epage=800&rft.pages=796-800&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2017.7952265&rft.eisbn=1509041176&rft.eisbn_list=9781509041176&rft_dat=%3Cieee_CHZPO%3E7952265%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-ecd425d7b92fe5afd32a69a4678070d409f8a8af920294949d355b133b9c656a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7952265&rfr_iscdi=true