Loading…
Convolutional Neural Network for speaker change detection in telephone speaker diarization system
The aim of this paper is to propose a speaker change detection technique based on Convolutional Neural Network (CNN) and evaluate its contribution to the performance of a speaker diarization system for telephone conversations. For the comparison we used an i-vector based speaker diarization system....
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4949 |
container_issue | |
container_start_page | 4945 |
container_title | |
container_volume | |
creator | Hruz, Marek Zajic, Zbynek |
description | The aim of this paper is to propose a speaker change detection technique based on Convolutional Neural Network (CNN) and evaluate its contribution to the performance of a speaker diarization system for telephone conversations. For the comparison we used an i-vector based speaker diarization system. The baseline speaker change detection uses Generalized Likelihood Ratio (GLR) metric. Experiments were conducted on the English part of the CallHome corpus. Our proposed CNN speaker change detection outperformed the GLR approach, reducing the Equal Error Rate relatively by 46 %. The final results on speaker diarization system indicate that the use of speaker change detection based on CNN is beneficial with relative improvement of diarization error rate by 28 %. |
doi_str_mv | 10.1109/ICASSP.2017.7953097 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7953097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7953097</ieee_id><sourcerecordid>7953097</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6430a4b57807ce729ca4ed2f19160a3329b53b9ff9afeca238374c27ccc1810b3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AURkdBsK0-QTfzAqn3ziSZzFKCP4WiQhXclZvJjR2bJmGSKvXp1Vpcnc3h4_AJMUWYIYK9mufXy-XTTAGambGJBmtOxBgTsBAjmvRUjJQ2NkILr-di3PfvAJCZOBsJytvmo613g28bquUD78IBw2cbNrJqg-w7pg0H6dbUvLEseWD3a0vfyIFr7tZtw_9W6Sn4LzoI_b4feHshziqqe748ciJebm-e8_to8Xj3E76IPJpkiNJYA8VFYjIwjo2yjmIuVYUWUyCtlS0SXdiqslSxI6UzbWKnjHMOM4RCT8T0b9cz86oLfkthvzreob8BtMlW9g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convolutional Neural Network for speaker change detection in telephone speaker diarization system</title><source>IEEE Xplore All Conference Series</source><creator>Hruz, Marek ; Zajic, Zbynek</creator><creatorcontrib>Hruz, Marek ; Zajic, Zbynek</creatorcontrib><description>The aim of this paper is to propose a speaker change detection technique based on Convolutional Neural Network (CNN) and evaluate its contribution to the performance of a speaker diarization system for telephone conversations. For the comparison we used an i-vector based speaker diarization system. The baseline speaker change detection uses Generalized Likelihood Ratio (GLR) metric. Experiments were conducted on the English part of the CallHome corpus. Our proposed CNN speaker change detection outperformed the GLR approach, reducing the Equal Error Rate relatively by 46 %. The final results on speaker diarization system indicate that the use of speaker change detection based on CNN is beneficial with relative improvement of diarization error rate by 28 %.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1509041176</identifier><identifier>EISBN: 9781509041176</identifier><identifier>DOI: 10.1109/ICASSP.2017.7953097</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; Convolutional Neural Network ; Generalized Likelihood Ratio ; Labeling ; Measurement ; Speaker Change Detection ; Speaker Diarization ; Spectrogram ; Speech ; Telephone sets</subject><ispartof>2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, p.4945-4949</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7953097$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7953097$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hruz, Marek</creatorcontrib><creatorcontrib>Zajic, Zbynek</creatorcontrib><title>Convolutional Neural Network for speaker change detection in telephone speaker diarization system</title><title>2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>The aim of this paper is to propose a speaker change detection technique based on Convolutional Neural Network (CNN) and evaluate its contribution to the performance of a speaker diarization system for telephone conversations. For the comparison we used an i-vector based speaker diarization system. The baseline speaker change detection uses Generalized Likelihood Ratio (GLR) metric. Experiments were conducted on the English part of the CallHome corpus. Our proposed CNN speaker change detection outperformed the GLR approach, reducing the Equal Error Rate relatively by 46 %. The final results on speaker diarization system indicate that the use of speaker change detection based on CNN is beneficial with relative improvement of diarization error rate by 28 %.</description><subject>Convolution</subject><subject>Convolutional Neural Network</subject><subject>Generalized Likelihood Ratio</subject><subject>Labeling</subject><subject>Measurement</subject><subject>Speaker Change Detection</subject><subject>Speaker Diarization</subject><subject>Spectrogram</subject><subject>Speech</subject><subject>Telephone sets</subject><issn>2379-190X</issn><isbn>1509041176</isbn><isbn>9781509041176</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kM1Kw0AURkdBsK0-QTfzAqn3ziSZzFKCP4WiQhXclZvJjR2bJmGSKvXp1Vpcnc3h4_AJMUWYIYK9mufXy-XTTAGambGJBmtOxBgTsBAjmvRUjJQ2NkILr-di3PfvAJCZOBsJytvmo613g28bquUD78IBw2cbNrJqg-w7pg0H6dbUvLEseWD3a0vfyIFr7tZtw_9W6Sn4LzoI_b4feHshziqqe748ciJebm-e8_to8Xj3E76IPJpkiNJYA8VFYjIwjo2yjmIuVYUWUyCtlS0SXdiqslSxI6UzbWKnjHMOM4RCT8T0b9cz86oLfkthvzreob8BtMlW9g</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Hruz, Marek</creator><creator>Zajic, Zbynek</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201703</creationdate><title>Convolutional Neural Network for speaker change detection in telephone speaker diarization system</title><author>Hruz, Marek ; Zajic, Zbynek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6430a4b57807ce729ca4ed2f19160a3329b53b9ff9afeca238374c27ccc1810b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Convolution</topic><topic>Convolutional Neural Network</topic><topic>Generalized Likelihood Ratio</topic><topic>Labeling</topic><topic>Measurement</topic><topic>Speaker Change Detection</topic><topic>Speaker Diarization</topic><topic>Spectrogram</topic><topic>Speech</topic><topic>Telephone sets</topic><toplevel>online_resources</toplevel><creatorcontrib>Hruz, Marek</creatorcontrib><creatorcontrib>Zajic, Zbynek</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hruz, Marek</au><au>Zajic, Zbynek</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convolutional Neural Network for speaker change detection in telephone speaker diarization system</atitle><btitle>2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2017-03</date><risdate>2017</risdate><spage>4945</spage><epage>4949</epage><pages>4945-4949</pages><eissn>2379-190X</eissn><eisbn>1509041176</eisbn><eisbn>9781509041176</eisbn><abstract>The aim of this paper is to propose a speaker change detection technique based on Convolutional Neural Network (CNN) and evaluate its contribution to the performance of a speaker diarization system for telephone conversations. For the comparison we used an i-vector based speaker diarization system. The baseline speaker change detection uses Generalized Likelihood Ratio (GLR) metric. Experiments were conducted on the English part of the CallHome corpus. Our proposed CNN speaker change detection outperformed the GLR approach, reducing the Equal Error Rate relatively by 46 %. The final results on speaker diarization system indicate that the use of speaker change detection based on CNN is beneficial with relative improvement of diarization error rate by 28 %.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2017.7953097</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, p.4945-4949 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_7953097 |
source | IEEE Xplore All Conference Series |
subjects | Convolution Convolutional Neural Network Generalized Likelihood Ratio Labeling Measurement Speaker Change Detection Speaker Diarization Spectrogram Speech Telephone sets |
title | Convolutional Neural Network for speaker change detection in telephone speaker diarization system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convolutional%20Neural%20Network%20for%20speaker%20change%20detection%20in%20telephone%20speaker%20diarization%20system&rft.btitle=2017%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Hruz,%20Marek&rft.date=2017-03&rft.spage=4945&rft.epage=4949&rft.pages=4945-4949&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2017.7953097&rft.eisbn=1509041176&rft.eisbn_list=9781509041176&rft_dat=%3Cieee_CHZPO%3E7953097%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6430a4b57807ce729ca4ed2f19160a3329b53b9ff9afeca238374c27ccc1810b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7953097&rfr_iscdi=true |