Loading…
RGB-NIR imaging with exposure bracketing for joint denoising and deblurring of low-light color images
Color images taken in low light scenes are deteriorated with noise and motion blur. The simultaneous reduction of noise and motion blur from the low-light color images is difficult because the imposed noise hinders accurate motion blur kernel estimation. To overcome this problem, we build a novel im...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6059 |
container_issue | |
container_start_page | 6055 |
container_title | |
container_volume | |
creator | Yamashita, Hiroki Sugimura, Daisuke Hamamoto, Takayuki |
description | Color images taken in low light scenes are deteriorated with noise and motion blur. The simultaneous reduction of noise and motion blur from the low-light color images is difficult because the imposed noise hinders accurate motion blur kernel estimation. To overcome this problem, we build a novel imaging system using a single sensor that captures red, green, blue (RGB) and near-infrared (NIR) images. Our imaging system captures low-light scenes with exposure bracketing, which is a technique to acquire multiple images with different exposure times. It thus allows us to obtain the short- and long-exposure RGB/NIR images. Both the short- and long-exposure NIR images taken using an NIR flash unit can be captured with less noise; thus they enable estimation of motion blur kernel accurately. Based on this fact, we perform joint denoising and deblurring of the low-light color image with the estimated motion blur kernel. Our experiments using real raw data captured by our imaging system demonstrate the effectiveness of our method. |
doi_str_mv | 10.1109/ICASSP.2017.7953319 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7953319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7953319</ieee_id><sourcerecordid>7953319</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-93f76ec3dfdfcf8fc88b0a7266ba88f9cbfcd8214e217776547016b1024434123</originalsourceid><addsrcrecordid>eNotkM1OwzAQhA0SEm3hCXrxC6R4bcc_R6igVKoAtSBxq2LHTl1CXDmpCm9PInpafTPa2dEiNAUyAyD6bjm_32zeZpSAnEmdMwb6Ao0hJ5pwACku0YgyqTPQ5PMajdt2TwhRkqsRcuvFQ_ayXOPwXVShqfApdDvsfg6xPSaHTSrsl-sGw8eE9zE0HS5dE0M7aEVT9mTqY0oDRo_reMrqUO06bGPdbwyxrr1BV76oW3d7nhP08fT4Pn_OVq-LvvwqCyDzLtPMS-EsK33prVfeKmVIIakQplDKa2u8LRUF7ihIKUXOJQFhgFDOGQfKJmj6nxucc9tD6q-n3-35JewPWzBW6g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RGB-NIR imaging with exposure bracketing for joint denoising and deblurring of low-light color images</title><source>IEEE Xplore All Conference Series</source><creator>Yamashita, Hiroki ; Sugimura, Daisuke ; Hamamoto, Takayuki</creator><creatorcontrib>Yamashita, Hiroki ; Sugimura, Daisuke ; Hamamoto, Takayuki</creatorcontrib><description>Color images taken in low light scenes are deteriorated with noise and motion blur. The simultaneous reduction of noise and motion blur from the low-light color images is difficult because the imposed noise hinders accurate motion blur kernel estimation. To overcome this problem, we build a novel imaging system using a single sensor that captures red, green, blue (RGB) and near-infrared (NIR) images. Our imaging system captures low-light scenes with exposure bracketing, which is a technique to acquire multiple images with different exposure times. It thus allows us to obtain the short- and long-exposure RGB/NIR images. Both the short- and long-exposure NIR images taken using an NIR flash unit can be captured with less noise; thus they enable estimation of motion blur kernel accurately. Based on this fact, we perform joint denoising and deblurring of the low-light color image with the estimated motion blur kernel. Our experiments using real raw data captured by our imaging system demonstrate the effectiveness of our method.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1509041176</identifier><identifier>EISBN: 9781509041176</identifier><identifier>DOI: 10.1109/ICASSP.2017.7953319</identifier><language>eng</language><publisher>IEEE</publisher><subject>Color ; deblurring ; denoising ; Estimation ; exposure bracketing ; Image reconstruction ; Image restoration ; Imaging ; Kernel ; low-light image restoration ; Noise reduction ; RGB/NIR single sensor</subject><ispartof>2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, p.6055-6059</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7953319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7953319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yamashita, Hiroki</creatorcontrib><creatorcontrib>Sugimura, Daisuke</creatorcontrib><creatorcontrib>Hamamoto, Takayuki</creatorcontrib><title>RGB-NIR imaging with exposure bracketing for joint denoising and deblurring of low-light color images</title><title>2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Color images taken in low light scenes are deteriorated with noise and motion blur. The simultaneous reduction of noise and motion blur from the low-light color images is difficult because the imposed noise hinders accurate motion blur kernel estimation. To overcome this problem, we build a novel imaging system using a single sensor that captures red, green, blue (RGB) and near-infrared (NIR) images. Our imaging system captures low-light scenes with exposure bracketing, which is a technique to acquire multiple images with different exposure times. It thus allows us to obtain the short- and long-exposure RGB/NIR images. Both the short- and long-exposure NIR images taken using an NIR flash unit can be captured with less noise; thus they enable estimation of motion blur kernel accurately. Based on this fact, we perform joint denoising and deblurring of the low-light color image with the estimated motion blur kernel. Our experiments using real raw data captured by our imaging system demonstrate the effectiveness of our method.</description><subject>Color</subject><subject>deblurring</subject><subject>denoising</subject><subject>Estimation</subject><subject>exposure bracketing</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Imaging</subject><subject>Kernel</subject><subject>low-light image restoration</subject><subject>Noise reduction</subject><subject>RGB/NIR single sensor</subject><issn>2379-190X</issn><isbn>1509041176</isbn><isbn>9781509041176</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhA0SEm3hCXrxC6R4bcc_R6igVKoAtSBxq2LHTl1CXDmpCm9PInpafTPa2dEiNAUyAyD6bjm_32zeZpSAnEmdMwb6Ao0hJ5pwACku0YgyqTPQ5PMajdt2TwhRkqsRcuvFQ_ayXOPwXVShqfApdDvsfg6xPSaHTSrsl-sGw8eE9zE0HS5dE0M7aEVT9mTqY0oDRo_reMrqUO06bGPdbwyxrr1BV76oW3d7nhP08fT4Pn_OVq-LvvwqCyDzLtPMS-EsK33prVfeKmVIIakQplDKa2u8LRUF7ihIKUXOJQFhgFDOGQfKJmj6nxucc9tD6q-n3-35JewPWzBW6g</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Yamashita, Hiroki</creator><creator>Sugimura, Daisuke</creator><creator>Hamamoto, Takayuki</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201703</creationdate><title>RGB-NIR imaging with exposure bracketing for joint denoising and deblurring of low-light color images</title><author>Yamashita, Hiroki ; Sugimura, Daisuke ; Hamamoto, Takayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-93f76ec3dfdfcf8fc88b0a7266ba88f9cbfcd8214e217776547016b1024434123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Color</topic><topic>deblurring</topic><topic>denoising</topic><topic>Estimation</topic><topic>exposure bracketing</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Imaging</topic><topic>Kernel</topic><topic>low-light image restoration</topic><topic>Noise reduction</topic><topic>RGB/NIR single sensor</topic><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, Hiroki</creatorcontrib><creatorcontrib>Sugimura, Daisuke</creatorcontrib><creatorcontrib>Hamamoto, Takayuki</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamashita, Hiroki</au><au>Sugimura, Daisuke</au><au>Hamamoto, Takayuki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RGB-NIR imaging with exposure bracketing for joint denoising and deblurring of low-light color images</atitle><btitle>2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2017-03</date><risdate>2017</risdate><spage>6055</spage><epage>6059</epage><pages>6055-6059</pages><eissn>2379-190X</eissn><eisbn>1509041176</eisbn><eisbn>9781509041176</eisbn><abstract>Color images taken in low light scenes are deteriorated with noise and motion blur. The simultaneous reduction of noise and motion blur from the low-light color images is difficult because the imposed noise hinders accurate motion blur kernel estimation. To overcome this problem, we build a novel imaging system using a single sensor that captures red, green, blue (RGB) and near-infrared (NIR) images. Our imaging system captures low-light scenes with exposure bracketing, which is a technique to acquire multiple images with different exposure times. It thus allows us to obtain the short- and long-exposure RGB/NIR images. Both the short- and long-exposure NIR images taken using an NIR flash unit can be captured with less noise; thus they enable estimation of motion blur kernel accurately. Based on this fact, we perform joint denoising and deblurring of the low-light color image with the estimated motion blur kernel. Our experiments using real raw data captured by our imaging system demonstrate the effectiveness of our method.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2017.7953319</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, p.6055-6059 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_7953319 |
source | IEEE Xplore All Conference Series |
subjects | Color deblurring denoising Estimation exposure bracketing Image reconstruction Image restoration Imaging Kernel low-light image restoration Noise reduction RGB/NIR single sensor |
title | RGB-NIR imaging with exposure bracketing for joint denoising and deblurring of low-light color images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RGB-NIR%20imaging%20with%20exposure%20bracketing%20for%20joint%20denoising%20and%20deblurring%20of%20low-light%20color%20images&rft.btitle=2017%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Yamashita,%20Hiroki&rft.date=2017-03&rft.spage=6055&rft.epage=6059&rft.pages=6055-6059&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2017.7953319&rft.eisbn=1509041176&rft.eisbn_list=9781509041176&rft_dat=%3Cieee_CHZPO%3E7953319%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-93f76ec3dfdfcf8fc88b0a7266ba88f9cbfcd8214e217776547016b1024434123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7953319&rfr_iscdi=true |