Loading…

RGB-NIR imaging with exposure bracketing for joint denoising and deblurring of low-light color images

Color images taken in low light scenes are deteriorated with noise and motion blur. The simultaneous reduction of noise and motion blur from the low-light color images is difficult because the imposed noise hinders accurate motion blur kernel estimation. To overcome this problem, we build a novel im...

Full description

Saved in:
Bibliographic Details
Main Authors: Yamashita, Hiroki, Sugimura, Daisuke, Hamamoto, Takayuki
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6059
container_issue
container_start_page 6055
container_title
container_volume
creator Yamashita, Hiroki
Sugimura, Daisuke
Hamamoto, Takayuki
description Color images taken in low light scenes are deteriorated with noise and motion blur. The simultaneous reduction of noise and motion blur from the low-light color images is difficult because the imposed noise hinders accurate motion blur kernel estimation. To overcome this problem, we build a novel imaging system using a single sensor that captures red, green, blue (RGB) and near-infrared (NIR) images. Our imaging system captures low-light scenes with exposure bracketing, which is a technique to acquire multiple images with different exposure times. It thus allows us to obtain the short- and long-exposure RGB/NIR images. Both the short- and long-exposure NIR images taken using an NIR flash unit can be captured with less noise; thus they enable estimation of motion blur kernel accurately. Based on this fact, we perform joint denoising and deblurring of the low-light color image with the estimated motion blur kernel. Our experiments using real raw data captured by our imaging system demonstrate the effectiveness of our method.
doi_str_mv 10.1109/ICASSP.2017.7953319
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7953319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7953319</ieee_id><sourcerecordid>7953319</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-93f76ec3dfdfcf8fc88b0a7266ba88f9cbfcd8214e217776547016b1024434123</originalsourceid><addsrcrecordid>eNotkM1OwzAQhA0SEm3hCXrxC6R4bcc_R6igVKoAtSBxq2LHTl1CXDmpCm9PInpafTPa2dEiNAUyAyD6bjm_32zeZpSAnEmdMwb6Ao0hJ5pwACku0YgyqTPQ5PMajdt2TwhRkqsRcuvFQ_ayXOPwXVShqfApdDvsfg6xPSaHTSrsl-sGw8eE9zE0HS5dE0M7aEVT9mTqY0oDRo_reMrqUO06bGPdbwyxrr1BV76oW3d7nhP08fT4Pn_OVq-LvvwqCyDzLtPMS-EsK33prVfeKmVIIakQplDKa2u8LRUF7ihIKUXOJQFhgFDOGQfKJmj6nxucc9tD6q-n3-35JewPWzBW6g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RGB-NIR imaging with exposure bracketing for joint denoising and deblurring of low-light color images</title><source>IEEE Xplore All Conference Series</source><creator>Yamashita, Hiroki ; Sugimura, Daisuke ; Hamamoto, Takayuki</creator><creatorcontrib>Yamashita, Hiroki ; Sugimura, Daisuke ; Hamamoto, Takayuki</creatorcontrib><description>Color images taken in low light scenes are deteriorated with noise and motion blur. The simultaneous reduction of noise and motion blur from the low-light color images is difficult because the imposed noise hinders accurate motion blur kernel estimation. To overcome this problem, we build a novel imaging system using a single sensor that captures red, green, blue (RGB) and near-infrared (NIR) images. Our imaging system captures low-light scenes with exposure bracketing, which is a technique to acquire multiple images with different exposure times. It thus allows us to obtain the short- and long-exposure RGB/NIR images. Both the short- and long-exposure NIR images taken using an NIR flash unit can be captured with less noise; thus they enable estimation of motion blur kernel accurately. Based on this fact, we perform joint denoising and deblurring of the low-light color image with the estimated motion blur kernel. Our experiments using real raw data captured by our imaging system demonstrate the effectiveness of our method.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1509041176</identifier><identifier>EISBN: 9781509041176</identifier><identifier>DOI: 10.1109/ICASSP.2017.7953319</identifier><language>eng</language><publisher>IEEE</publisher><subject>Color ; deblurring ; denoising ; Estimation ; exposure bracketing ; Image reconstruction ; Image restoration ; Imaging ; Kernel ; low-light image restoration ; Noise reduction ; RGB/NIR single sensor</subject><ispartof>2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, p.6055-6059</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7953319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7953319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yamashita, Hiroki</creatorcontrib><creatorcontrib>Sugimura, Daisuke</creatorcontrib><creatorcontrib>Hamamoto, Takayuki</creatorcontrib><title>RGB-NIR imaging with exposure bracketing for joint denoising and deblurring of low-light color images</title><title>2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Color images taken in low light scenes are deteriorated with noise and motion blur. The simultaneous reduction of noise and motion blur from the low-light color images is difficult because the imposed noise hinders accurate motion blur kernel estimation. To overcome this problem, we build a novel imaging system using a single sensor that captures red, green, blue (RGB) and near-infrared (NIR) images. Our imaging system captures low-light scenes with exposure bracketing, which is a technique to acquire multiple images with different exposure times. It thus allows us to obtain the short- and long-exposure RGB/NIR images. Both the short- and long-exposure NIR images taken using an NIR flash unit can be captured with less noise; thus they enable estimation of motion blur kernel accurately. Based on this fact, we perform joint denoising and deblurring of the low-light color image with the estimated motion blur kernel. Our experiments using real raw data captured by our imaging system demonstrate the effectiveness of our method.</description><subject>Color</subject><subject>deblurring</subject><subject>denoising</subject><subject>Estimation</subject><subject>exposure bracketing</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Imaging</subject><subject>Kernel</subject><subject>low-light image restoration</subject><subject>Noise reduction</subject><subject>RGB/NIR single sensor</subject><issn>2379-190X</issn><isbn>1509041176</isbn><isbn>9781509041176</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhA0SEm3hCXrxC6R4bcc_R6igVKoAtSBxq2LHTl1CXDmpCm9PInpafTPa2dEiNAUyAyD6bjm_32zeZpSAnEmdMwb6Ao0hJ5pwACku0YgyqTPQ5PMajdt2TwhRkqsRcuvFQ_ayXOPwXVShqfApdDvsfg6xPSaHTSrsl-sGw8eE9zE0HS5dE0M7aEVT9mTqY0oDRo_reMrqUO06bGPdbwyxrr1BV76oW3d7nhP08fT4Pn_OVq-LvvwqCyDzLtPMS-EsK33prVfeKmVIIakQplDKa2u8LRUF7ihIKUXOJQFhgFDOGQfKJmj6nxucc9tD6q-n3-35JewPWzBW6g</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Yamashita, Hiroki</creator><creator>Sugimura, Daisuke</creator><creator>Hamamoto, Takayuki</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201703</creationdate><title>RGB-NIR imaging with exposure bracketing for joint denoising and deblurring of low-light color images</title><author>Yamashita, Hiroki ; Sugimura, Daisuke ; Hamamoto, Takayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-93f76ec3dfdfcf8fc88b0a7266ba88f9cbfcd8214e217776547016b1024434123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Color</topic><topic>deblurring</topic><topic>denoising</topic><topic>Estimation</topic><topic>exposure bracketing</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Imaging</topic><topic>Kernel</topic><topic>low-light image restoration</topic><topic>Noise reduction</topic><topic>RGB/NIR single sensor</topic><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, Hiroki</creatorcontrib><creatorcontrib>Sugimura, Daisuke</creatorcontrib><creatorcontrib>Hamamoto, Takayuki</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamashita, Hiroki</au><au>Sugimura, Daisuke</au><au>Hamamoto, Takayuki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RGB-NIR imaging with exposure bracketing for joint denoising and deblurring of low-light color images</atitle><btitle>2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2017-03</date><risdate>2017</risdate><spage>6055</spage><epage>6059</epage><pages>6055-6059</pages><eissn>2379-190X</eissn><eisbn>1509041176</eisbn><eisbn>9781509041176</eisbn><abstract>Color images taken in low light scenes are deteriorated with noise and motion blur. The simultaneous reduction of noise and motion blur from the low-light color images is difficult because the imposed noise hinders accurate motion blur kernel estimation. To overcome this problem, we build a novel imaging system using a single sensor that captures red, green, blue (RGB) and near-infrared (NIR) images. Our imaging system captures low-light scenes with exposure bracketing, which is a technique to acquire multiple images with different exposure times. It thus allows us to obtain the short- and long-exposure RGB/NIR images. Both the short- and long-exposure NIR images taken using an NIR flash unit can be captured with less noise; thus they enable estimation of motion blur kernel accurately. Based on this fact, we perform joint denoising and deblurring of the low-light color image with the estimated motion blur kernel. Our experiments using real raw data captured by our imaging system demonstrate the effectiveness of our method.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2017.7953319</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, p.6055-6059
issn 2379-190X
language eng
recordid cdi_ieee_primary_7953319
source IEEE Xplore All Conference Series
subjects Color
deblurring
denoising
Estimation
exposure bracketing
Image reconstruction
Image restoration
Imaging
Kernel
low-light image restoration
Noise reduction
RGB/NIR single sensor
title RGB-NIR imaging with exposure bracketing for joint denoising and deblurring of low-light color images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RGB-NIR%20imaging%20with%20exposure%20bracketing%20for%20joint%20denoising%20and%20deblurring%20of%20low-light%20color%20images&rft.btitle=2017%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Yamashita,%20Hiroki&rft.date=2017-03&rft.spage=6055&rft.epage=6059&rft.pages=6055-6059&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2017.7953319&rft.eisbn=1509041176&rft.eisbn_list=9781509041176&rft_dat=%3Cieee_CHZPO%3E7953319%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-93f76ec3dfdfcf8fc88b0a7266ba88f9cbfcd8214e217776547016b1024434123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7953319&rfr_iscdi=true