Loading…
Model prediction for deposition height during a direct metal deposition process
There has been increasing demand for the development of lumped-parameter models that can be used for real-time control design and optimization for laser-based additive manufacturing (AM) processes. Our prior work developed a physics-based multivariable model of melt-pool geometry and temperature dyn...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c223t-1b71d63c9426cd3903df4af2a08ecfecc4c598e3bc58127f604f0a6f740877aa3 |
---|---|
cites | |
container_end_page | 2194 |
container_issue | |
container_start_page | 2188 |
container_title | |
container_volume | |
creator | Li, Jianyi Wang, Qian Michaleris, Panagiotis Reutzel, Edward W. |
description | There has been increasing demand for the development of lumped-parameter models that can be used for real-time control design and optimization for laser-based additive manufacturing (AM) processes. Our prior work developed a physics-based multivariable model of melt-pool geometry and temperature dynamics for a single-bead deposition in a directed energy deposition process and validated the model using experimental data on deposition of single-bead Ti-6AL-4V (or Inconel®718) tracks on an Optomec ® laser engineering net shaping (LENS) system. In this paper, we extend such model for melt-pool geometry on a single-bead single-layer deposition to a multi-bead multi-layer deposition and use the developed model on melt-pool height dynamics to predict part height of three-dimensional builds. Specifically, the extended model incorporates temperature history during the built process, which is computed using temperature field generated from super-positioning of Rosenthal's solution of point heat sources, with one heat source corresponding to one bead built before. The proposed model for part height prediction is then validated using a single-bead thin wall structure built with Ti-6AL-4V using an Optomec ® LENS MR-7 system. The model prediction shows good agreement with measurement of part height with less than 10% error rate. |
doi_str_mv | 10.23919/ACC.2017.7963277 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7963277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7963277</ieee_id><sourcerecordid>7963277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-1b71d63c9426cd3903df4af2a08ecfecc4c598e3bc58127f604f0a6f740877aa3</originalsourceid><addsrcrecordid>eNpNj81KAzEURqNQsLZ9AHGTF5jxJplJcpdl8A8q3ei6pMlNG5l2hmRc-PaCduHq48DhwMfYnYBaKhT4sO66WoIwtUGtpDFXbIXGihYQWkRpr9lcKmOr1mpxw25L-QQQiBrmbPs2BOr5mCkkP6XhzOOQeaBxKOkXj5QOx4mHr5zOB-54SJn8xE80uf6_N-bBUylLNouuL7S67IJ9PD2-dy_VZvv82q03lZdSTZXYGxG08thI7YNCUCE2LkoHlnwk7xvfoiW1960V0kQNTQSno2nAGuOcWrD7v24iot2Y08nl793lv_oBh91P8w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Model prediction for deposition height during a direct metal deposition process</title><source>IEEE Xplore All Conference Series</source><creator>Li, Jianyi ; Wang, Qian ; Michaleris, Panagiotis ; Reutzel, Edward W.</creator><creatorcontrib>Li, Jianyi ; Wang, Qian ; Michaleris, Panagiotis ; Reutzel, Edward W.</creatorcontrib><description>There has been increasing demand for the development of lumped-parameter models that can be used for real-time control design and optimization for laser-based additive manufacturing (AM) processes. Our prior work developed a physics-based multivariable model of melt-pool geometry and temperature dynamics for a single-bead deposition in a directed energy deposition process and validated the model using experimental data on deposition of single-bead Ti-6AL-4V (or Inconel®718) tracks on an Optomec ® laser engineering net shaping (LENS) system. In this paper, we extend such model for melt-pool geometry on a single-bead single-layer deposition to a multi-bead multi-layer deposition and use the developed model on melt-pool height dynamics to predict part height of three-dimensional builds. Specifically, the extended model incorporates temperature history during the built process, which is computed using temperature field generated from super-positioning of Rosenthal's solution of point heat sources, with one heat source corresponding to one bead built before. The proposed model for part height prediction is then validated using a single-bead thin wall structure built with Ti-6AL-4V using an Optomec ® LENS MR-7 system. The model prediction shows good agreement with measurement of part height with less than 10% error rate.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781509059928</identifier><identifier>EISBN: 150905992X</identifier><identifier>DOI: 10.23919/ACC.2017.7963277</identifier><language>eng</language><publisher>AACC</publisher><subject>Computational modeling ; Geometry ; Heating systems ; Powders ; Power lasers ; Solid modeling ; Temperature distribution</subject><ispartof>2017 American Control Conference (ACC), 2017, p.2188-2194</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-1b71d63c9426cd3903df4af2a08ecfecc4c598e3bc58127f604f0a6f740877aa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7963277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7963277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Jianyi</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Michaleris, Panagiotis</creatorcontrib><creatorcontrib>Reutzel, Edward W.</creatorcontrib><title>Model prediction for deposition height during a direct metal deposition process</title><title>2017 American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>There has been increasing demand for the development of lumped-parameter models that can be used for real-time control design and optimization for laser-based additive manufacturing (AM) processes. Our prior work developed a physics-based multivariable model of melt-pool geometry and temperature dynamics for a single-bead deposition in a directed energy deposition process and validated the model using experimental data on deposition of single-bead Ti-6AL-4V (or Inconel®718) tracks on an Optomec ® laser engineering net shaping (LENS) system. In this paper, we extend such model for melt-pool geometry on a single-bead single-layer deposition to a multi-bead multi-layer deposition and use the developed model on melt-pool height dynamics to predict part height of three-dimensional builds. Specifically, the extended model incorporates temperature history during the built process, which is computed using temperature field generated from super-positioning of Rosenthal's solution of point heat sources, with one heat source corresponding to one bead built before. The proposed model for part height prediction is then validated using a single-bead thin wall structure built with Ti-6AL-4V using an Optomec ® LENS MR-7 system. The model prediction shows good agreement with measurement of part height with less than 10% error rate.</description><subject>Computational modeling</subject><subject>Geometry</subject><subject>Heating systems</subject><subject>Powders</subject><subject>Power lasers</subject><subject>Solid modeling</subject><subject>Temperature distribution</subject><issn>2378-5861</issn><isbn>9781509059928</isbn><isbn>150905992X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNj81KAzEURqNQsLZ9AHGTF5jxJplJcpdl8A8q3ei6pMlNG5l2hmRc-PaCduHq48DhwMfYnYBaKhT4sO66WoIwtUGtpDFXbIXGihYQWkRpr9lcKmOr1mpxw25L-QQQiBrmbPs2BOr5mCkkP6XhzOOQeaBxKOkXj5QOx4mHr5zOB-54SJn8xE80uf6_N-bBUylLNouuL7S67IJ9PD2-dy_VZvv82q03lZdSTZXYGxG08thI7YNCUCE2LkoHlnwk7xvfoiW1960V0kQNTQSno2nAGuOcWrD7v24iot2Y08nl793lv_oBh91P8w</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Li, Jianyi</creator><creator>Wang, Qian</creator><creator>Michaleris, Panagiotis</creator><creator>Reutzel, Edward W.</creator><general>AACC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201705</creationdate><title>Model prediction for deposition height during a direct metal deposition process</title><author>Li, Jianyi ; Wang, Qian ; Michaleris, Panagiotis ; Reutzel, Edward W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-1b71d63c9426cd3903df4af2a08ecfecc4c598e3bc58127f604f0a6f740877aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational modeling</topic><topic>Geometry</topic><topic>Heating systems</topic><topic>Powders</topic><topic>Power lasers</topic><topic>Solid modeling</topic><topic>Temperature distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Jianyi</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Michaleris, Panagiotis</creatorcontrib><creatorcontrib>Reutzel, Edward W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jianyi</au><au>Wang, Qian</au><au>Michaleris, Panagiotis</au><au>Reutzel, Edward W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Model prediction for deposition height during a direct metal deposition process</atitle><btitle>2017 American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2017-05</date><risdate>2017</risdate><spage>2188</spage><epage>2194</epage><pages>2188-2194</pages><eissn>2378-5861</eissn><eisbn>9781509059928</eisbn><eisbn>150905992X</eisbn><abstract>There has been increasing demand for the development of lumped-parameter models that can be used for real-time control design and optimization for laser-based additive manufacturing (AM) processes. Our prior work developed a physics-based multivariable model of melt-pool geometry and temperature dynamics for a single-bead deposition in a directed energy deposition process and validated the model using experimental data on deposition of single-bead Ti-6AL-4V (or Inconel®718) tracks on an Optomec ® laser engineering net shaping (LENS) system. In this paper, we extend such model for melt-pool geometry on a single-bead single-layer deposition to a multi-bead multi-layer deposition and use the developed model on melt-pool height dynamics to predict part height of three-dimensional builds. Specifically, the extended model incorporates temperature history during the built process, which is computed using temperature field generated from super-positioning of Rosenthal's solution of point heat sources, with one heat source corresponding to one bead built before. The proposed model for part height prediction is then validated using a single-bead thin wall structure built with Ti-6AL-4V using an Optomec ® LENS MR-7 system. The model prediction shows good agreement with measurement of part height with less than 10% error rate.</abstract><pub>AACC</pub><doi>10.23919/ACC.2017.7963277</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2378-5861 |
ispartof | 2017 American Control Conference (ACC), 2017, p.2188-2194 |
issn | 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_7963277 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Geometry Heating systems Powders Power lasers Solid modeling Temperature distribution |
title | Model prediction for deposition height during a direct metal deposition process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Model%20prediction%20for%20deposition%20height%20during%20a%20direct%20metal%20deposition%20process&rft.btitle=2017%20American%20Control%20Conference%20(ACC)&rft.au=Li,%20Jianyi&rft.date=2017-05&rft.spage=2188&rft.epage=2194&rft.pages=2188-2194&rft.eissn=2378-5861&rft_id=info:doi/10.23919/ACC.2017.7963277&rft.eisbn=9781509059928&rft.eisbn_list=150905992X&rft_dat=%3Cieee_CHZPO%3E7963277%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-1b71d63c9426cd3903df4af2a08ecfecc4c598e3bc58127f604f0a6f740877aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7963277&rfr_iscdi=true |