Loading…
Validation of adaptive control laws using optimization and trajectory sensitivity
In this paper it is proposed an easy-to-use verification and validation method for adaptive control laws that relies on time domain simulations. The problem is set as a trajectory falsification problem that is the search of closed loop trajectories that, starting from a set of admissible initial con...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5070 |
container_issue | |
container_start_page | 5065 |
container_title | |
container_volume | |
creator | Fravolini, Mario Luca Ficola, Antonio Radicioni, Fabio Yucelen, Tansel Arabi, Ehsan |
description | In this paper it is proposed an easy-to-use verification and validation method for adaptive control laws that relies on time domain simulations. The problem is set as a trajectory falsification problem that is the search of closed loop trajectories that, starting from a set of admissible initial conditions, reach a set of unsafe states. The falsification is placed as a nonlinear optimization problem whose decision variables are the initial condition of the states and the uncertain parameters of the system. The falsification is performed iteratively using the local gradient of the sensitivity function derived from a linearized model of the system trajectory. The sensitivity function allows computing updated values for the initial condition and for the system parameters such that the updated system trajectory get closer to the user defined unsafe set. A detailed Model Reference Adaptive Control law falsification example applied to an F16 aircraft model is presented to highlight the efficacy of the approach. |
doi_str_mv | 10.23919/ACC.2017.7963740 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7963740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7963740</ieee_id><sourcerecordid>7963740</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f3d3dd0166caca5d8d590a34349bf8e08927c090b75e9e4bbc36f8362111b6a33</originalsourceid><addsrcrecordid>eNotkNtKw0AYhFdBsNY-gHizL5C4h-zhvyxBrVAQQb0tf7Ib2ZJmS3ZV4tMbaK_mYuYbmCHkjrNSSODwsK7rUjBuSgNamopdkBUYyxUDpgCEvSQLIY0tlNX8mtyktGeMA2i2IG-f2AeHOcSBxo6iw2MOP562cchj7GmPv4l-pzB80Tg7h_B3yuLgaB5x79scx4kmP6QwgyFPt-Sqwz751VmX5OPp8b3eFNvX55d6vS0CNyoXnXTSOca1brFF5axTwFBWsoKms55ZEKadBzRGefBV07RSd1ZqwTlvNEq5JPen3uC93x3HcMBx2p0fkP-vR1EU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Validation of adaptive control laws using optimization and trajectory sensitivity</title><source>IEEE Xplore All Conference Series</source><creator>Fravolini, Mario Luca ; Ficola, Antonio ; Radicioni, Fabio ; Yucelen, Tansel ; Arabi, Ehsan</creator><creatorcontrib>Fravolini, Mario Luca ; Ficola, Antonio ; Radicioni, Fabio ; Yucelen, Tansel ; Arabi, Ehsan</creatorcontrib><description>In this paper it is proposed an easy-to-use verification and validation method for adaptive control laws that relies on time domain simulations. The problem is set as a trajectory falsification problem that is the search of closed loop trajectories that, starting from a set of admissible initial conditions, reach a set of unsafe states. The falsification is placed as a nonlinear optimization problem whose decision variables are the initial condition of the states and the uncertain parameters of the system. The falsification is performed iteratively using the local gradient of the sensitivity function derived from a linearized model of the system trajectory. The sensitivity function allows computing updated values for the initial condition and for the system parameters such that the updated system trajectory get closer to the user defined unsafe set. A detailed Model Reference Adaptive Control law falsification example applied to an F16 aircraft model is presented to highlight the efficacy of the approach.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781509059928</identifier><identifier>EISBN: 150905992X</identifier><identifier>DOI: 10.23919/ACC.2017.7963740</identifier><language>eng</language><publisher>AACC</publisher><subject>Adaptation models ; Adaptive control ; Optimization ; Robustness ; Sensitivity ; Trajectory ; Uncertainty</subject><ispartof>2017 American Control Conference (ACC), 2017, p.5065-5070</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7963740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7963740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fravolini, Mario Luca</creatorcontrib><creatorcontrib>Ficola, Antonio</creatorcontrib><creatorcontrib>Radicioni, Fabio</creatorcontrib><creatorcontrib>Yucelen, Tansel</creatorcontrib><creatorcontrib>Arabi, Ehsan</creatorcontrib><title>Validation of adaptive control laws using optimization and trajectory sensitivity</title><title>2017 American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>In this paper it is proposed an easy-to-use verification and validation method for adaptive control laws that relies on time domain simulations. The problem is set as a trajectory falsification problem that is the search of closed loop trajectories that, starting from a set of admissible initial conditions, reach a set of unsafe states. The falsification is placed as a nonlinear optimization problem whose decision variables are the initial condition of the states and the uncertain parameters of the system. The falsification is performed iteratively using the local gradient of the sensitivity function derived from a linearized model of the system trajectory. The sensitivity function allows computing updated values for the initial condition and for the system parameters such that the updated system trajectory get closer to the user defined unsafe set. A detailed Model Reference Adaptive Control law falsification example applied to an F16 aircraft model is presented to highlight the efficacy of the approach.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Sensitivity</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>2378-5861</issn><isbn>9781509059928</isbn><isbn>150905992X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNtKw0AYhFdBsNY-gHizL5C4h-zhvyxBrVAQQb0tf7Ib2ZJmS3ZV4tMbaK_mYuYbmCHkjrNSSODwsK7rUjBuSgNamopdkBUYyxUDpgCEvSQLIY0tlNX8mtyktGeMA2i2IG-f2AeHOcSBxo6iw2MOP562cchj7GmPv4l-pzB80Tg7h_B3yuLgaB5x79scx4kmP6QwgyFPt-Sqwz751VmX5OPp8b3eFNvX55d6vS0CNyoXnXTSOca1brFF5axTwFBWsoKms55ZEKadBzRGefBV07RSd1ZqwTlvNEq5JPen3uC93x3HcMBx2p0fkP-vR1EU</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Fravolini, Mario Luca</creator><creator>Ficola, Antonio</creator><creator>Radicioni, Fabio</creator><creator>Yucelen, Tansel</creator><creator>Arabi, Ehsan</creator><general>AACC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201705</creationdate><title>Validation of adaptive control laws using optimization and trajectory sensitivity</title><author>Fravolini, Mario Luca ; Ficola, Antonio ; Radicioni, Fabio ; Yucelen, Tansel ; Arabi, Ehsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f3d3dd0166caca5d8d590a34349bf8e08927c090b75e9e4bbc36f8362111b6a33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Sensitivity</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Fravolini, Mario Luca</creatorcontrib><creatorcontrib>Ficola, Antonio</creatorcontrib><creatorcontrib>Radicioni, Fabio</creatorcontrib><creatorcontrib>Yucelen, Tansel</creatorcontrib><creatorcontrib>Arabi, Ehsan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fravolini, Mario Luca</au><au>Ficola, Antonio</au><au>Radicioni, Fabio</au><au>Yucelen, Tansel</au><au>Arabi, Ehsan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Validation of adaptive control laws using optimization and trajectory sensitivity</atitle><btitle>2017 American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2017-05</date><risdate>2017</risdate><spage>5065</spage><epage>5070</epage><pages>5065-5070</pages><eissn>2378-5861</eissn><eisbn>9781509059928</eisbn><eisbn>150905992X</eisbn><abstract>In this paper it is proposed an easy-to-use verification and validation method for adaptive control laws that relies on time domain simulations. The problem is set as a trajectory falsification problem that is the search of closed loop trajectories that, starting from a set of admissible initial conditions, reach a set of unsafe states. The falsification is placed as a nonlinear optimization problem whose decision variables are the initial condition of the states and the uncertain parameters of the system. The falsification is performed iteratively using the local gradient of the sensitivity function derived from a linearized model of the system trajectory. The sensitivity function allows computing updated values for the initial condition and for the system parameters such that the updated system trajectory get closer to the user defined unsafe set. A detailed Model Reference Adaptive Control law falsification example applied to an F16 aircraft model is presented to highlight the efficacy of the approach.</abstract><pub>AACC</pub><doi>10.23919/ACC.2017.7963740</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2378-5861 |
ispartof | 2017 American Control Conference (ACC), 2017, p.5065-5070 |
issn | 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_7963740 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Adaptive control Optimization Robustness Sensitivity Trajectory Uncertainty |
title | Validation of adaptive control laws using optimization and trajectory sensitivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Validation%20of%20adaptive%20control%20laws%20using%20optimization%20and%20trajectory%20sensitivity&rft.btitle=2017%20American%20Control%20Conference%20(ACC)&rft.au=Fravolini,%20Mario%20Luca&rft.date=2017-05&rft.spage=5065&rft.epage=5070&rft.pages=5065-5070&rft.eissn=2378-5861&rft_id=info:doi/10.23919/ACC.2017.7963740&rft.eisbn=9781509059928&rft.eisbn_list=150905992X&rft_dat=%3Cieee_CHZPO%3E7963740%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f3d3dd0166caca5d8d590a34349bf8e08927c090b75e9e4bbc36f8362111b6a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7963740&rfr_iscdi=true |