Loading…

Validation of adaptive control laws using optimization and trajectory sensitivity

In this paper it is proposed an easy-to-use verification and validation method for adaptive control laws that relies on time domain simulations. The problem is set as a trajectory falsification problem that is the search of closed loop trajectories that, starting from a set of admissible initial con...

Full description

Saved in:
Bibliographic Details
Main Authors: Fravolini, Mario Luca, Ficola, Antonio, Radicioni, Fabio, Yucelen, Tansel, Arabi, Ehsan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5070
container_issue
container_start_page 5065
container_title
container_volume
creator Fravolini, Mario Luca
Ficola, Antonio
Radicioni, Fabio
Yucelen, Tansel
Arabi, Ehsan
description In this paper it is proposed an easy-to-use verification and validation method for adaptive control laws that relies on time domain simulations. The problem is set as a trajectory falsification problem that is the search of closed loop trajectories that, starting from a set of admissible initial conditions, reach a set of unsafe states. The falsification is placed as a nonlinear optimization problem whose decision variables are the initial condition of the states and the uncertain parameters of the system. The falsification is performed iteratively using the local gradient of the sensitivity function derived from a linearized model of the system trajectory. The sensitivity function allows computing updated values for the initial condition and for the system parameters such that the updated system trajectory get closer to the user defined unsafe set. A detailed Model Reference Adaptive Control law falsification example applied to an F16 aircraft model is presented to highlight the efficacy of the approach.
doi_str_mv 10.23919/ACC.2017.7963740
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7963740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7963740</ieee_id><sourcerecordid>7963740</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f3d3dd0166caca5d8d590a34349bf8e08927c090b75e9e4bbc36f8362111b6a33</originalsourceid><addsrcrecordid>eNotkNtKw0AYhFdBsNY-gHizL5C4h-zhvyxBrVAQQb0tf7Ib2ZJmS3ZV4tMbaK_mYuYbmCHkjrNSSODwsK7rUjBuSgNamopdkBUYyxUDpgCEvSQLIY0tlNX8mtyktGeMA2i2IG-f2AeHOcSBxo6iw2MOP562cchj7GmPv4l-pzB80Tg7h_B3yuLgaB5x79scx4kmP6QwgyFPt-Sqwz751VmX5OPp8b3eFNvX55d6vS0CNyoXnXTSOca1brFF5axTwFBWsoKms55ZEKadBzRGefBV07RSd1ZqwTlvNEq5JPen3uC93x3HcMBx2p0fkP-vR1EU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Validation of adaptive control laws using optimization and trajectory sensitivity</title><source>IEEE Xplore All Conference Series</source><creator>Fravolini, Mario Luca ; Ficola, Antonio ; Radicioni, Fabio ; Yucelen, Tansel ; Arabi, Ehsan</creator><creatorcontrib>Fravolini, Mario Luca ; Ficola, Antonio ; Radicioni, Fabio ; Yucelen, Tansel ; Arabi, Ehsan</creatorcontrib><description>In this paper it is proposed an easy-to-use verification and validation method for adaptive control laws that relies on time domain simulations. The problem is set as a trajectory falsification problem that is the search of closed loop trajectories that, starting from a set of admissible initial conditions, reach a set of unsafe states. The falsification is placed as a nonlinear optimization problem whose decision variables are the initial condition of the states and the uncertain parameters of the system. The falsification is performed iteratively using the local gradient of the sensitivity function derived from a linearized model of the system trajectory. The sensitivity function allows computing updated values for the initial condition and for the system parameters such that the updated system trajectory get closer to the user defined unsafe set. A detailed Model Reference Adaptive Control law falsification example applied to an F16 aircraft model is presented to highlight the efficacy of the approach.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781509059928</identifier><identifier>EISBN: 150905992X</identifier><identifier>DOI: 10.23919/ACC.2017.7963740</identifier><language>eng</language><publisher>AACC</publisher><subject>Adaptation models ; Adaptive control ; Optimization ; Robustness ; Sensitivity ; Trajectory ; Uncertainty</subject><ispartof>2017 American Control Conference (ACC), 2017, p.5065-5070</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7963740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7963740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fravolini, Mario Luca</creatorcontrib><creatorcontrib>Ficola, Antonio</creatorcontrib><creatorcontrib>Radicioni, Fabio</creatorcontrib><creatorcontrib>Yucelen, Tansel</creatorcontrib><creatorcontrib>Arabi, Ehsan</creatorcontrib><title>Validation of adaptive control laws using optimization and trajectory sensitivity</title><title>2017 American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>In this paper it is proposed an easy-to-use verification and validation method for adaptive control laws that relies on time domain simulations. The problem is set as a trajectory falsification problem that is the search of closed loop trajectories that, starting from a set of admissible initial conditions, reach a set of unsafe states. The falsification is placed as a nonlinear optimization problem whose decision variables are the initial condition of the states and the uncertain parameters of the system. The falsification is performed iteratively using the local gradient of the sensitivity function derived from a linearized model of the system trajectory. The sensitivity function allows computing updated values for the initial condition and for the system parameters such that the updated system trajectory get closer to the user defined unsafe set. A detailed Model Reference Adaptive Control law falsification example applied to an F16 aircraft model is presented to highlight the efficacy of the approach.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Sensitivity</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>2378-5861</issn><isbn>9781509059928</isbn><isbn>150905992X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNtKw0AYhFdBsNY-gHizL5C4h-zhvyxBrVAQQb0tf7Ib2ZJmS3ZV4tMbaK_mYuYbmCHkjrNSSODwsK7rUjBuSgNamopdkBUYyxUDpgCEvSQLIY0tlNX8mtyktGeMA2i2IG-f2AeHOcSBxo6iw2MOP562cchj7GmPv4l-pzB80Tg7h_B3yuLgaB5x79scx4kmP6QwgyFPt-Sqwz751VmX5OPp8b3eFNvX55d6vS0CNyoXnXTSOca1brFF5axTwFBWsoKms55ZEKadBzRGefBV07RSd1ZqwTlvNEq5JPen3uC93x3HcMBx2p0fkP-vR1EU</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Fravolini, Mario Luca</creator><creator>Ficola, Antonio</creator><creator>Radicioni, Fabio</creator><creator>Yucelen, Tansel</creator><creator>Arabi, Ehsan</creator><general>AACC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201705</creationdate><title>Validation of adaptive control laws using optimization and trajectory sensitivity</title><author>Fravolini, Mario Luca ; Ficola, Antonio ; Radicioni, Fabio ; Yucelen, Tansel ; Arabi, Ehsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f3d3dd0166caca5d8d590a34349bf8e08927c090b75e9e4bbc36f8362111b6a33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Sensitivity</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Fravolini, Mario Luca</creatorcontrib><creatorcontrib>Ficola, Antonio</creatorcontrib><creatorcontrib>Radicioni, Fabio</creatorcontrib><creatorcontrib>Yucelen, Tansel</creatorcontrib><creatorcontrib>Arabi, Ehsan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fravolini, Mario Luca</au><au>Ficola, Antonio</au><au>Radicioni, Fabio</au><au>Yucelen, Tansel</au><au>Arabi, Ehsan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Validation of adaptive control laws using optimization and trajectory sensitivity</atitle><btitle>2017 American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2017-05</date><risdate>2017</risdate><spage>5065</spage><epage>5070</epage><pages>5065-5070</pages><eissn>2378-5861</eissn><eisbn>9781509059928</eisbn><eisbn>150905992X</eisbn><abstract>In this paper it is proposed an easy-to-use verification and validation method for adaptive control laws that relies on time domain simulations. The problem is set as a trajectory falsification problem that is the search of closed loop trajectories that, starting from a set of admissible initial conditions, reach a set of unsafe states. The falsification is placed as a nonlinear optimization problem whose decision variables are the initial condition of the states and the uncertain parameters of the system. The falsification is performed iteratively using the local gradient of the sensitivity function derived from a linearized model of the system trajectory. The sensitivity function allows computing updated values for the initial condition and for the system parameters such that the updated system trajectory get closer to the user defined unsafe set. A detailed Model Reference Adaptive Control law falsification example applied to an F16 aircraft model is presented to highlight the efficacy of the approach.</abstract><pub>AACC</pub><doi>10.23919/ACC.2017.7963740</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2378-5861
ispartof 2017 American Control Conference (ACC), 2017, p.5065-5070
issn 2378-5861
language eng
recordid cdi_ieee_primary_7963740
source IEEE Xplore All Conference Series
subjects Adaptation models
Adaptive control
Optimization
Robustness
Sensitivity
Trajectory
Uncertainty
title Validation of adaptive control laws using optimization and trajectory sensitivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Validation%20of%20adaptive%20control%20laws%20using%20optimization%20and%20trajectory%20sensitivity&rft.btitle=2017%20American%20Control%20Conference%20(ACC)&rft.au=Fravolini,%20Mario%20Luca&rft.date=2017-05&rft.spage=5065&rft.epage=5070&rft.pages=5065-5070&rft.eissn=2378-5861&rft_id=info:doi/10.23919/ACC.2017.7963740&rft.eisbn=9781509059928&rft.eisbn_list=150905992X&rft_dat=%3Cieee_CHZPO%3E7963740%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f3d3dd0166caca5d8d590a34349bf8e08927c090b75e9e4bbc36f8362111b6a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7963740&rfr_iscdi=true