Loading…
Neuromorphic hardware in the loop: Training a deep spiking network on the BrainScaleS wafer-scale system
Emulating spiking neural networks on analog neuromorphic hardware offers several advantages over simulating them on conventional computers, particularly in terms of speed and energy consumption. However, this usually comes at the cost of reduced control over the dynamics of the emulated networks. In...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c224t-ecb844e0b60d662797772df38e4204373ad2062891038ed106ede0a02142abc03 |
---|---|
cites | |
container_end_page | 2234 |
container_issue | |
container_start_page | 2227 |
container_title | |
container_volume | |
creator | Schmitt, Sebastian Klahn, Johann Bellec, Guillaume Grubl, Andreas Guttler, Maurice Hartel, Andreas Hartmann, Stephan Husmann, Dan Husmann, Kai Jeltsch, Sebastian Karasenko, Vitali Kleider, Mitja Koke, Christoph Kononov, Alexander Mauch, Christian Muller, Eric Muller, Paul Partzsch, Johannes Petrovici, Mihai A. Schiefer, Stefan Scholze, Stefan Thanasoulis, Vasilis Vogginger, Bernhard Legenstein, Robert Maass, Wolfgang Mayr, Christian Schuffny, Rene Schemmel, Johannes Meier, Karlheinz |
description | Emulating spiking neural networks on analog neuromorphic hardware offers several advantages over simulating them on conventional computers, particularly in terms of speed and energy consumption. However, this usually comes at the cost of reduced control over the dynamics of the emulated networks. In this paper, we demonstrate how iterative training of a hardware-emulated network can compensate for anomalies induced by the analog substrate. We first convert a deep neural network trained in software to a spiking network on the BrainScaleS wafer-scale neuromorphic system, thereby enabling an acceleration factor of 10000 compared to the biological time domain. This mapping is followed by the in-the-loop training, where in each training step, the network activity is first recorded in hardware and then used to compute the parameter updates in software via backpropagation. An essential finding is that the parameter updates do not have to be precise, but only need to approximately follow the correct gradient, which simplifies the computation of updates. Using this approach, after only several tens of iterations, the spiking network shows an accuracy close to the ideal software-emulated prototype. The presented techniques show that deep spiking networks emulated on analog neuromorphic devices can attain good computational performance despite the inherent variations of the analog substrate. |
doi_str_mv | 10.1109/IJCNN.2017.7966125 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7966125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7966125</ieee_id><sourcerecordid>7966125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-ecb844e0b60d662797772df38e4204373ad2062891038ed106ede0a02142abc03</originalsourceid><addsrcrecordid>eNotkM1OAjEUhauJiYi8gG76AoO3t6WdulPiD4bgAlyTzvSOU4GZSTuG8PZKYHXynXw5i8PYnYCxEGAfZh_TxWKMIMzYWK0FTi7YyJpcTMCCFjniJRug0CJTCsw1u0npBwCltXLA6gX9xnbXxq4OJa9d9HsXiYeG9zXxbdt2j3wVXWhC880d90QdT13YHLGhft_GDW9P8vNRW5ZuS0u-dxXFLB2Bp0PqaXfLriq3TTQ655B9vb6spu_Z_PNtNn2aZyWi6jMqi1wpgkKD1xqNNcagr2ROCkFJI51H0JhbAf-dF6DJEzhAodAVJcghuz_tBiJadzHsXDysz8fIP6DvV4k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neuromorphic hardware in the loop: Training a deep spiking network on the BrainScaleS wafer-scale system</title><source>IEEE Xplore All Conference Series</source><creator>Schmitt, Sebastian ; Klahn, Johann ; Bellec, Guillaume ; Grubl, Andreas ; Guttler, Maurice ; Hartel, Andreas ; Hartmann, Stephan ; Husmann, Dan ; Husmann, Kai ; Jeltsch, Sebastian ; Karasenko, Vitali ; Kleider, Mitja ; Koke, Christoph ; Kononov, Alexander ; Mauch, Christian ; Muller, Eric ; Muller, Paul ; Partzsch, Johannes ; Petrovici, Mihai A. ; Schiefer, Stefan ; Scholze, Stefan ; Thanasoulis, Vasilis ; Vogginger, Bernhard ; Legenstein, Robert ; Maass, Wolfgang ; Mayr, Christian ; Schuffny, Rene ; Schemmel, Johannes ; Meier, Karlheinz</creator><creatorcontrib>Schmitt, Sebastian ; Klahn, Johann ; Bellec, Guillaume ; Grubl, Andreas ; Guttler, Maurice ; Hartel, Andreas ; Hartmann, Stephan ; Husmann, Dan ; Husmann, Kai ; Jeltsch, Sebastian ; Karasenko, Vitali ; Kleider, Mitja ; Koke, Christoph ; Kononov, Alexander ; Mauch, Christian ; Muller, Eric ; Muller, Paul ; Partzsch, Johannes ; Petrovici, Mihai A. ; Schiefer, Stefan ; Scholze, Stefan ; Thanasoulis, Vasilis ; Vogginger, Bernhard ; Legenstein, Robert ; Maass, Wolfgang ; Mayr, Christian ; Schuffny, Rene ; Schemmel, Johannes ; Meier, Karlheinz</creatorcontrib><description>Emulating spiking neural networks on analog neuromorphic hardware offers several advantages over simulating them on conventional computers, particularly in terms of speed and energy consumption. However, this usually comes at the cost of reduced control over the dynamics of the emulated networks. In this paper, we demonstrate how iterative training of a hardware-emulated network can compensate for anomalies induced by the analog substrate. We first convert a deep neural network trained in software to a spiking network on the BrainScaleS wafer-scale neuromorphic system, thereby enabling an acceleration factor of 10000 compared to the biological time domain. This mapping is followed by the in-the-loop training, where in each training step, the network activity is first recorded in hardware and then used to compute the parameter updates in software via backpropagation. An essential finding is that the parameter updates do not have to be precise, but only need to approximately follow the correct gradient, which simplifies the computation of updates. Using this approach, after only several tens of iterations, the spiking network shows an accuracy close to the ideal software-emulated prototype. The presented techniques show that deep spiking networks emulated on analog neuromorphic devices can attain good computational performance despite the inherent variations of the analog substrate.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781509061822</identifier><identifier>EISBN: 1509061827</identifier><identifier>DOI: 10.1109/IJCNN.2017.7966125</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Hardware ; Neural networks ; Neuromorphics ; Neurons ; Training</subject><ispartof>2017 International Joint Conference on Neural Networks (IJCNN), 2017, p.2227-2234</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-ecb844e0b60d662797772df38e4204373ad2062891038ed106ede0a02142abc03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7966125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7966125$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schmitt, Sebastian</creatorcontrib><creatorcontrib>Klahn, Johann</creatorcontrib><creatorcontrib>Bellec, Guillaume</creatorcontrib><creatorcontrib>Grubl, Andreas</creatorcontrib><creatorcontrib>Guttler, Maurice</creatorcontrib><creatorcontrib>Hartel, Andreas</creatorcontrib><creatorcontrib>Hartmann, Stephan</creatorcontrib><creatorcontrib>Husmann, Dan</creatorcontrib><creatorcontrib>Husmann, Kai</creatorcontrib><creatorcontrib>Jeltsch, Sebastian</creatorcontrib><creatorcontrib>Karasenko, Vitali</creatorcontrib><creatorcontrib>Kleider, Mitja</creatorcontrib><creatorcontrib>Koke, Christoph</creatorcontrib><creatorcontrib>Kononov, Alexander</creatorcontrib><creatorcontrib>Mauch, Christian</creatorcontrib><creatorcontrib>Muller, Eric</creatorcontrib><creatorcontrib>Muller, Paul</creatorcontrib><creatorcontrib>Partzsch, Johannes</creatorcontrib><creatorcontrib>Petrovici, Mihai A.</creatorcontrib><creatorcontrib>Schiefer, Stefan</creatorcontrib><creatorcontrib>Scholze, Stefan</creatorcontrib><creatorcontrib>Thanasoulis, Vasilis</creatorcontrib><creatorcontrib>Vogginger, Bernhard</creatorcontrib><creatorcontrib>Legenstein, Robert</creatorcontrib><creatorcontrib>Maass, Wolfgang</creatorcontrib><creatorcontrib>Mayr, Christian</creatorcontrib><creatorcontrib>Schuffny, Rene</creatorcontrib><creatorcontrib>Schemmel, Johannes</creatorcontrib><creatorcontrib>Meier, Karlheinz</creatorcontrib><title>Neuromorphic hardware in the loop: Training a deep spiking network on the BrainScaleS wafer-scale system</title><title>2017 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>Emulating spiking neural networks on analog neuromorphic hardware offers several advantages over simulating them on conventional computers, particularly in terms of speed and energy consumption. However, this usually comes at the cost of reduced control over the dynamics of the emulated networks. In this paper, we demonstrate how iterative training of a hardware-emulated network can compensate for anomalies induced by the analog substrate. We first convert a deep neural network trained in software to a spiking network on the BrainScaleS wafer-scale neuromorphic system, thereby enabling an acceleration factor of 10000 compared to the biological time domain. This mapping is followed by the in-the-loop training, where in each training step, the network activity is first recorded in hardware and then used to compute the parameter updates in software via backpropagation. An essential finding is that the parameter updates do not have to be precise, but only need to approximately follow the correct gradient, which simplifies the computation of updates. Using this approach, after only several tens of iterations, the spiking network shows an accuracy close to the ideal software-emulated prototype. The presented techniques show that deep spiking networks emulated on analog neuromorphic devices can attain good computational performance despite the inherent variations of the analog substrate.</description><subject>Calibration</subject><subject>Hardware</subject><subject>Neural networks</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Training</subject><issn>2161-4407</issn><isbn>9781509061822</isbn><isbn>1509061827</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OAjEUhauJiYi8gG76AoO3t6WdulPiD4bgAlyTzvSOU4GZSTuG8PZKYHXynXw5i8PYnYCxEGAfZh_TxWKMIMzYWK0FTi7YyJpcTMCCFjniJRug0CJTCsw1u0npBwCltXLA6gX9xnbXxq4OJa9d9HsXiYeG9zXxbdt2j3wVXWhC880d90QdT13YHLGhft_GDW9P8vNRW5ZuS0u-dxXFLB2Bp0PqaXfLriq3TTQ655B9vb6spu_Z_PNtNn2aZyWi6jMqi1wpgkKD1xqNNcagr2ROCkFJI51H0JhbAf-dF6DJEzhAodAVJcghuz_tBiJadzHsXDysz8fIP6DvV4k</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Schmitt, Sebastian</creator><creator>Klahn, Johann</creator><creator>Bellec, Guillaume</creator><creator>Grubl, Andreas</creator><creator>Guttler, Maurice</creator><creator>Hartel, Andreas</creator><creator>Hartmann, Stephan</creator><creator>Husmann, Dan</creator><creator>Husmann, Kai</creator><creator>Jeltsch, Sebastian</creator><creator>Karasenko, Vitali</creator><creator>Kleider, Mitja</creator><creator>Koke, Christoph</creator><creator>Kononov, Alexander</creator><creator>Mauch, Christian</creator><creator>Muller, Eric</creator><creator>Muller, Paul</creator><creator>Partzsch, Johannes</creator><creator>Petrovici, Mihai A.</creator><creator>Schiefer, Stefan</creator><creator>Scholze, Stefan</creator><creator>Thanasoulis, Vasilis</creator><creator>Vogginger, Bernhard</creator><creator>Legenstein, Robert</creator><creator>Maass, Wolfgang</creator><creator>Mayr, Christian</creator><creator>Schuffny, Rene</creator><creator>Schemmel, Johannes</creator><creator>Meier, Karlheinz</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201705</creationdate><title>Neuromorphic hardware in the loop: Training a deep spiking network on the BrainScaleS wafer-scale system</title><author>Schmitt, Sebastian ; Klahn, Johann ; Bellec, Guillaume ; Grubl, Andreas ; Guttler, Maurice ; Hartel, Andreas ; Hartmann, Stephan ; Husmann, Dan ; Husmann, Kai ; Jeltsch, Sebastian ; Karasenko, Vitali ; Kleider, Mitja ; Koke, Christoph ; Kononov, Alexander ; Mauch, Christian ; Muller, Eric ; Muller, Paul ; Partzsch, Johannes ; Petrovici, Mihai A. ; Schiefer, Stefan ; Scholze, Stefan ; Thanasoulis, Vasilis ; Vogginger, Bernhard ; Legenstein, Robert ; Maass, Wolfgang ; Mayr, Christian ; Schuffny, Rene ; Schemmel, Johannes ; Meier, Karlheinz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-ecb844e0b60d662797772df38e4204373ad2062891038ed106ede0a02142abc03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Calibration</topic><topic>Hardware</topic><topic>Neural networks</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, Sebastian</creatorcontrib><creatorcontrib>Klahn, Johann</creatorcontrib><creatorcontrib>Bellec, Guillaume</creatorcontrib><creatorcontrib>Grubl, Andreas</creatorcontrib><creatorcontrib>Guttler, Maurice</creatorcontrib><creatorcontrib>Hartel, Andreas</creatorcontrib><creatorcontrib>Hartmann, Stephan</creatorcontrib><creatorcontrib>Husmann, Dan</creatorcontrib><creatorcontrib>Husmann, Kai</creatorcontrib><creatorcontrib>Jeltsch, Sebastian</creatorcontrib><creatorcontrib>Karasenko, Vitali</creatorcontrib><creatorcontrib>Kleider, Mitja</creatorcontrib><creatorcontrib>Koke, Christoph</creatorcontrib><creatorcontrib>Kononov, Alexander</creatorcontrib><creatorcontrib>Mauch, Christian</creatorcontrib><creatorcontrib>Muller, Eric</creatorcontrib><creatorcontrib>Muller, Paul</creatorcontrib><creatorcontrib>Partzsch, Johannes</creatorcontrib><creatorcontrib>Petrovici, Mihai A.</creatorcontrib><creatorcontrib>Schiefer, Stefan</creatorcontrib><creatorcontrib>Scholze, Stefan</creatorcontrib><creatorcontrib>Thanasoulis, Vasilis</creatorcontrib><creatorcontrib>Vogginger, Bernhard</creatorcontrib><creatorcontrib>Legenstein, Robert</creatorcontrib><creatorcontrib>Maass, Wolfgang</creatorcontrib><creatorcontrib>Mayr, Christian</creatorcontrib><creatorcontrib>Schuffny, Rene</creatorcontrib><creatorcontrib>Schemmel, Johannes</creatorcontrib><creatorcontrib>Meier, Karlheinz</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schmitt, Sebastian</au><au>Klahn, Johann</au><au>Bellec, Guillaume</au><au>Grubl, Andreas</au><au>Guttler, Maurice</au><au>Hartel, Andreas</au><au>Hartmann, Stephan</au><au>Husmann, Dan</au><au>Husmann, Kai</au><au>Jeltsch, Sebastian</au><au>Karasenko, Vitali</au><au>Kleider, Mitja</au><au>Koke, Christoph</au><au>Kononov, Alexander</au><au>Mauch, Christian</au><au>Muller, Eric</au><au>Muller, Paul</au><au>Partzsch, Johannes</au><au>Petrovici, Mihai A.</au><au>Schiefer, Stefan</au><au>Scholze, Stefan</au><au>Thanasoulis, Vasilis</au><au>Vogginger, Bernhard</au><au>Legenstein, Robert</au><au>Maass, Wolfgang</au><au>Mayr, Christian</au><au>Schuffny, Rene</au><au>Schemmel, Johannes</au><au>Meier, Karlheinz</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neuromorphic hardware in the loop: Training a deep spiking network on the BrainScaleS wafer-scale system</atitle><btitle>2017 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2017-05</date><risdate>2017</risdate><spage>2227</spage><epage>2234</epage><pages>2227-2234</pages><eissn>2161-4407</eissn><eisbn>9781509061822</eisbn><eisbn>1509061827</eisbn><abstract>Emulating spiking neural networks on analog neuromorphic hardware offers several advantages over simulating them on conventional computers, particularly in terms of speed and energy consumption. However, this usually comes at the cost of reduced control over the dynamics of the emulated networks. In this paper, we demonstrate how iterative training of a hardware-emulated network can compensate for anomalies induced by the analog substrate. We first convert a deep neural network trained in software to a spiking network on the BrainScaleS wafer-scale neuromorphic system, thereby enabling an acceleration factor of 10000 compared to the biological time domain. This mapping is followed by the in-the-loop training, where in each training step, the network activity is first recorded in hardware and then used to compute the parameter updates in software via backpropagation. An essential finding is that the parameter updates do not have to be precise, but only need to approximately follow the correct gradient, which simplifies the computation of updates. Using this approach, after only several tens of iterations, the spiking network shows an accuracy close to the ideal software-emulated prototype. The presented techniques show that deep spiking networks emulated on analog neuromorphic devices can attain good computational performance despite the inherent variations of the analog substrate.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2017.7966125</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-4407 |
ispartof | 2017 International Joint Conference on Neural Networks (IJCNN), 2017, p.2227-2234 |
issn | 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_7966125 |
source | IEEE Xplore All Conference Series |
subjects | Calibration Hardware Neural networks Neuromorphics Neurons Training |
title | Neuromorphic hardware in the loop: Training a deep spiking network on the BrainScaleS wafer-scale system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neuromorphic%20hardware%20in%20the%20loop:%20Training%20a%20deep%20spiking%20network%20on%20the%20BrainScaleS%20wafer-scale%20system&rft.btitle=2017%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Schmitt,%20Sebastian&rft.date=2017-05&rft.spage=2227&rft.epage=2234&rft.pages=2227-2234&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN.2017.7966125&rft.eisbn=9781509061822&rft.eisbn_list=1509061827&rft_dat=%3Cieee_CHZPO%3E7966125%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-ecb844e0b60d662797772df38e4204373ad2062891038ed106ede0a02142abc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7966125&rfr_iscdi=true |