Loading…
In vivo classification of inflammation in blood vessels with convolutional neural networks
An emerging field in medical diagnostics is the study of micro-circulations in blood vessels. Several characteristics of the micro-circulations in blood vessels have been shown to predict inflammation in a patient's tissue. The characteristics are video recorded via a camera inserted into the s...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3027 |
container_issue | |
container_start_page | 3022 |
container_title | |
container_volume | |
creator | McIlroy, Stuart Kubo, Yoshimasa Trappenberg, Thomas Toguri, James Lehmann, Christian |
description | An emerging field in medical diagnostics is the study of micro-circulations in blood vessels. Several characteristics of the micro-circulations in blood vessels have been shown to predict inflammation in a patient's tissue. The characteristics are video recorded via a camera inserted into the subject. At present, the analysis of the videos are done manually by visual inspection to determine inflammation. In our paper, we propose a technique to automatically classify the videos as containing inflammation or not. Our technique uses a convolutional neural network which classifies many different segments of images from a video and averages the predictions. Our network achieves an accuracy of 83%. We further divide inflammation into extreme and moderate inflammation and our network achieves an accuracy of 80%. This is the first step in developing methods that can perform a better quantitative analysis of inflammation to speed up medical diagnosis. |
doi_str_mv | 10.1109/IJCNN.2017.7966231 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7966231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7966231</ieee_id><sourcerecordid>7966231</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9290662475d36e5f0e36a7b3f1e72995749ff6396f48b780793b7cdaedc18c8a3</originalsourceid><addsrcrecordid>eNotkMtKxDAYhaMgOI7zArrJC7TmT9pcllK8VIZxoxs3Q5omGE0TaTodfHsvM6uPA4ePw0HoCkgJQNRN-9RsNiUlIEqhOKcMTtBKCQk1UYSDpPQULShwKKqKiHN0kfMHIZQpxRborY149nPCJuicvfNGTz5FnBz20QU9DIfsI-5CSj2ebc42ZLz30zs2Kc4p7P4aOuBod-M_pn0aP_MlOnM6ZLs6cole7-9emsdi_fzQNrfrwoOop0LR35WcVqLuGbe1I5ZxLTrmwAqqVC0q5RxnirtKdkISoVgnTK9tb0AaqdkSXR-83lq7_Rr9oMfv7fEK9gMFTFQu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>In vivo classification of inflammation in blood vessels with convolutional neural networks</title><source>IEEE Xplore All Conference Series</source><creator>McIlroy, Stuart ; Kubo, Yoshimasa ; Trappenberg, Thomas ; Toguri, James ; Lehmann, Christian</creator><creatorcontrib>McIlroy, Stuart ; Kubo, Yoshimasa ; Trappenberg, Thomas ; Toguri, James ; Lehmann, Christian</creatorcontrib><description>An emerging field in medical diagnostics is the study of micro-circulations in blood vessels. Several characteristics of the micro-circulations in blood vessels have been shown to predict inflammation in a patient's tissue. The characteristics are video recorded via a camera inserted into the subject. At present, the analysis of the videos are done manually by visual inspection to determine inflammation. In our paper, we propose a technique to automatically classify the videos as containing inflammation or not. Our technique uses a convolutional neural network which classifies many different segments of images from a video and averages the predictions. Our network achieves an accuracy of 83%. We further divide inflammation into extreme and moderate inflammation and our network achieves an accuracy of 80%. This is the first step in developing methods that can perform a better quantitative analysis of inflammation to speed up medical diagnosis.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781509061822</identifier><identifier>EISBN: 1509061827</identifier><identifier>DOI: 10.1109/IJCNN.2017.7966231</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animals ; Biomedical imaging ; Blood ; Cameras ; Neural networks ; Training</subject><ispartof>2017 International Joint Conference on Neural Networks (IJCNN), 2017, p.3022-3027</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7966231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7966231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McIlroy, Stuart</creatorcontrib><creatorcontrib>Kubo, Yoshimasa</creatorcontrib><creatorcontrib>Trappenberg, Thomas</creatorcontrib><creatorcontrib>Toguri, James</creatorcontrib><creatorcontrib>Lehmann, Christian</creatorcontrib><title>In vivo classification of inflammation in blood vessels with convolutional neural networks</title><title>2017 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>An emerging field in medical diagnostics is the study of micro-circulations in blood vessels. Several characteristics of the micro-circulations in blood vessels have been shown to predict inflammation in a patient's tissue. The characteristics are video recorded via a camera inserted into the subject. At present, the analysis of the videos are done manually by visual inspection to determine inflammation. In our paper, we propose a technique to automatically classify the videos as containing inflammation or not. Our technique uses a convolutional neural network which classifies many different segments of images from a video and averages the predictions. Our network achieves an accuracy of 83%. We further divide inflammation into extreme and moderate inflammation and our network achieves an accuracy of 80%. This is the first step in developing methods that can perform a better quantitative analysis of inflammation to speed up medical diagnosis.</description><subject>Animals</subject><subject>Biomedical imaging</subject><subject>Blood</subject><subject>Cameras</subject><subject>Neural networks</subject><subject>Training</subject><issn>2161-4407</issn><isbn>9781509061822</isbn><isbn>1509061827</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKxDAYhaMgOI7zArrJC7TmT9pcllK8VIZxoxs3Q5omGE0TaTodfHsvM6uPA4ePw0HoCkgJQNRN-9RsNiUlIEqhOKcMTtBKCQk1UYSDpPQULShwKKqKiHN0kfMHIZQpxRborY149nPCJuicvfNGTz5FnBz20QU9DIfsI-5CSj2ebc42ZLz30zs2Kc4p7P4aOuBod-M_pn0aP_MlOnM6ZLs6cole7-9emsdi_fzQNrfrwoOop0LR35WcVqLuGbe1I5ZxLTrmwAqqVC0q5RxnirtKdkISoVgnTK9tb0AaqdkSXR-83lq7_Rr9oMfv7fEK9gMFTFQu</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>McIlroy, Stuart</creator><creator>Kubo, Yoshimasa</creator><creator>Trappenberg, Thomas</creator><creator>Toguri, James</creator><creator>Lehmann, Christian</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201705</creationdate><title>In vivo classification of inflammation in blood vessels with convolutional neural networks</title><author>McIlroy, Stuart ; Kubo, Yoshimasa ; Trappenberg, Thomas ; Toguri, James ; Lehmann, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9290662475d36e5f0e36a7b3f1e72995749ff6396f48b780793b7cdaedc18c8a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biomedical imaging</topic><topic>Blood</topic><topic>Cameras</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>McIlroy, Stuart</creatorcontrib><creatorcontrib>Kubo, Yoshimasa</creatorcontrib><creatorcontrib>Trappenberg, Thomas</creatorcontrib><creatorcontrib>Toguri, James</creatorcontrib><creatorcontrib>Lehmann, Christian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McIlroy, Stuart</au><au>Kubo, Yoshimasa</au><au>Trappenberg, Thomas</au><au>Toguri, James</au><au>Lehmann, Christian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>In vivo classification of inflammation in blood vessels with convolutional neural networks</atitle><btitle>2017 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2017-05</date><risdate>2017</risdate><spage>3022</spage><epage>3027</epage><pages>3022-3027</pages><eissn>2161-4407</eissn><eisbn>9781509061822</eisbn><eisbn>1509061827</eisbn><abstract>An emerging field in medical diagnostics is the study of micro-circulations in blood vessels. Several characteristics of the micro-circulations in blood vessels have been shown to predict inflammation in a patient's tissue. The characteristics are video recorded via a camera inserted into the subject. At present, the analysis of the videos are done manually by visual inspection to determine inflammation. In our paper, we propose a technique to automatically classify the videos as containing inflammation or not. Our technique uses a convolutional neural network which classifies many different segments of images from a video and averages the predictions. Our network achieves an accuracy of 83%. We further divide inflammation into extreme and moderate inflammation and our network achieves an accuracy of 80%. This is the first step in developing methods that can perform a better quantitative analysis of inflammation to speed up medical diagnosis.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2017.7966231</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-4407 |
ispartof | 2017 International Joint Conference on Neural Networks (IJCNN), 2017, p.3022-3027 |
issn | 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_7966231 |
source | IEEE Xplore All Conference Series |
subjects | Animals Biomedical imaging Blood Cameras Neural networks Training |
title | In vivo classification of inflammation in blood vessels with convolutional neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=In%20vivo%20classification%20of%20inflammation%20in%20blood%20vessels%20with%20convolutional%20neural%20networks&rft.btitle=2017%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=McIlroy,%20Stuart&rft.date=2017-05&rft.spage=3022&rft.epage=3027&rft.pages=3022-3027&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN.2017.7966231&rft.eisbn=9781509061822&rft.eisbn_list=1509061827&rft_dat=%3Cieee_CHZPO%3E7966231%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9290662475d36e5f0e36a7b3f1e72995749ff6396f48b780793b7cdaedc18c8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7966231&rfr_iscdi=true |