Loading…

In vivo classification of inflammation in blood vessels with convolutional neural networks

An emerging field in medical diagnostics is the study of micro-circulations in blood vessels. Several characteristics of the micro-circulations in blood vessels have been shown to predict inflammation in a patient's tissue. The characteristics are video recorded via a camera inserted into the s...

Full description

Saved in:
Bibliographic Details
Main Authors: McIlroy, Stuart, Kubo, Yoshimasa, Trappenberg, Thomas, Toguri, James, Lehmann, Christian
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3027
container_issue
container_start_page 3022
container_title
container_volume
creator McIlroy, Stuart
Kubo, Yoshimasa
Trappenberg, Thomas
Toguri, James
Lehmann, Christian
description An emerging field in medical diagnostics is the study of micro-circulations in blood vessels. Several characteristics of the micro-circulations in blood vessels have been shown to predict inflammation in a patient's tissue. The characteristics are video recorded via a camera inserted into the subject. At present, the analysis of the videos are done manually by visual inspection to determine inflammation. In our paper, we propose a technique to automatically classify the videos as containing inflammation or not. Our technique uses a convolutional neural network which classifies many different segments of images from a video and averages the predictions. Our network achieves an accuracy of 83%. We further divide inflammation into extreme and moderate inflammation and our network achieves an accuracy of 80%. This is the first step in developing methods that can perform a better quantitative analysis of inflammation to speed up medical diagnosis.
doi_str_mv 10.1109/IJCNN.2017.7966231
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7966231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7966231</ieee_id><sourcerecordid>7966231</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9290662475d36e5f0e36a7b3f1e72995749ff6396f48b780793b7cdaedc18c8a3</originalsourceid><addsrcrecordid>eNotkMtKxDAYhaMgOI7zArrJC7TmT9pcllK8VIZxoxs3Q5omGE0TaTodfHsvM6uPA4ePw0HoCkgJQNRN-9RsNiUlIEqhOKcMTtBKCQk1UYSDpPQULShwKKqKiHN0kfMHIZQpxRborY149nPCJuicvfNGTz5FnBz20QU9DIfsI-5CSj2ebc42ZLz30zs2Kc4p7P4aOuBod-M_pn0aP_MlOnM6ZLs6cole7-9emsdi_fzQNrfrwoOop0LR35WcVqLuGbe1I5ZxLTrmwAqqVC0q5RxnirtKdkISoVgnTK9tb0AaqdkSXR-83lq7_Rr9oMfv7fEK9gMFTFQu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>In vivo classification of inflammation in blood vessels with convolutional neural networks</title><source>IEEE Xplore All Conference Series</source><creator>McIlroy, Stuart ; Kubo, Yoshimasa ; Trappenberg, Thomas ; Toguri, James ; Lehmann, Christian</creator><creatorcontrib>McIlroy, Stuart ; Kubo, Yoshimasa ; Trappenberg, Thomas ; Toguri, James ; Lehmann, Christian</creatorcontrib><description>An emerging field in medical diagnostics is the study of micro-circulations in blood vessels. Several characteristics of the micro-circulations in blood vessels have been shown to predict inflammation in a patient's tissue. The characteristics are video recorded via a camera inserted into the subject. At present, the analysis of the videos are done manually by visual inspection to determine inflammation. In our paper, we propose a technique to automatically classify the videos as containing inflammation or not. Our technique uses a convolutional neural network which classifies many different segments of images from a video and averages the predictions. Our network achieves an accuracy of 83%. We further divide inflammation into extreme and moderate inflammation and our network achieves an accuracy of 80%. This is the first step in developing methods that can perform a better quantitative analysis of inflammation to speed up medical diagnosis.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781509061822</identifier><identifier>EISBN: 1509061827</identifier><identifier>DOI: 10.1109/IJCNN.2017.7966231</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animals ; Biomedical imaging ; Blood ; Cameras ; Neural networks ; Training</subject><ispartof>2017 International Joint Conference on Neural Networks (IJCNN), 2017, p.3022-3027</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7966231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7966231$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McIlroy, Stuart</creatorcontrib><creatorcontrib>Kubo, Yoshimasa</creatorcontrib><creatorcontrib>Trappenberg, Thomas</creatorcontrib><creatorcontrib>Toguri, James</creatorcontrib><creatorcontrib>Lehmann, Christian</creatorcontrib><title>In vivo classification of inflammation in blood vessels with convolutional neural networks</title><title>2017 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>An emerging field in medical diagnostics is the study of micro-circulations in blood vessels. Several characteristics of the micro-circulations in blood vessels have been shown to predict inflammation in a patient's tissue. The characteristics are video recorded via a camera inserted into the subject. At present, the analysis of the videos are done manually by visual inspection to determine inflammation. In our paper, we propose a technique to automatically classify the videos as containing inflammation or not. Our technique uses a convolutional neural network which classifies many different segments of images from a video and averages the predictions. Our network achieves an accuracy of 83%. We further divide inflammation into extreme and moderate inflammation and our network achieves an accuracy of 80%. This is the first step in developing methods that can perform a better quantitative analysis of inflammation to speed up medical diagnosis.</description><subject>Animals</subject><subject>Biomedical imaging</subject><subject>Blood</subject><subject>Cameras</subject><subject>Neural networks</subject><subject>Training</subject><issn>2161-4407</issn><isbn>9781509061822</isbn><isbn>1509061827</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKxDAYhaMgOI7zArrJC7TmT9pcllK8VIZxoxs3Q5omGE0TaTodfHsvM6uPA4ePw0HoCkgJQNRN-9RsNiUlIEqhOKcMTtBKCQk1UYSDpPQULShwKKqKiHN0kfMHIZQpxRborY149nPCJuicvfNGTz5FnBz20QU9DIfsI-5CSj2ebc42ZLz30zs2Kc4p7P4aOuBod-M_pn0aP_MlOnM6ZLs6cole7-9emsdi_fzQNrfrwoOop0LR35WcVqLuGbe1I5ZxLTrmwAqqVC0q5RxnirtKdkISoVgnTK9tb0AaqdkSXR-83lq7_Rr9oMfv7fEK9gMFTFQu</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>McIlroy, Stuart</creator><creator>Kubo, Yoshimasa</creator><creator>Trappenberg, Thomas</creator><creator>Toguri, James</creator><creator>Lehmann, Christian</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201705</creationdate><title>In vivo classification of inflammation in blood vessels with convolutional neural networks</title><author>McIlroy, Stuart ; Kubo, Yoshimasa ; Trappenberg, Thomas ; Toguri, James ; Lehmann, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9290662475d36e5f0e36a7b3f1e72995749ff6396f48b780793b7cdaedc18c8a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biomedical imaging</topic><topic>Blood</topic><topic>Cameras</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>McIlroy, Stuart</creatorcontrib><creatorcontrib>Kubo, Yoshimasa</creatorcontrib><creatorcontrib>Trappenberg, Thomas</creatorcontrib><creatorcontrib>Toguri, James</creatorcontrib><creatorcontrib>Lehmann, Christian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McIlroy, Stuart</au><au>Kubo, Yoshimasa</au><au>Trappenberg, Thomas</au><au>Toguri, James</au><au>Lehmann, Christian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>In vivo classification of inflammation in blood vessels with convolutional neural networks</atitle><btitle>2017 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2017-05</date><risdate>2017</risdate><spage>3022</spage><epage>3027</epage><pages>3022-3027</pages><eissn>2161-4407</eissn><eisbn>9781509061822</eisbn><eisbn>1509061827</eisbn><abstract>An emerging field in medical diagnostics is the study of micro-circulations in blood vessels. Several characteristics of the micro-circulations in blood vessels have been shown to predict inflammation in a patient's tissue. The characteristics are video recorded via a camera inserted into the subject. At present, the analysis of the videos are done manually by visual inspection to determine inflammation. In our paper, we propose a technique to automatically classify the videos as containing inflammation or not. Our technique uses a convolutional neural network which classifies many different segments of images from a video and averages the predictions. Our network achieves an accuracy of 83%. We further divide inflammation into extreme and moderate inflammation and our network achieves an accuracy of 80%. This is the first step in developing methods that can perform a better quantitative analysis of inflammation to speed up medical diagnosis.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2017.7966231</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-4407
ispartof 2017 International Joint Conference on Neural Networks (IJCNN), 2017, p.3022-3027
issn 2161-4407
language eng
recordid cdi_ieee_primary_7966231
source IEEE Xplore All Conference Series
subjects Animals
Biomedical imaging
Blood
Cameras
Neural networks
Training
title In vivo classification of inflammation in blood vessels with convolutional neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=In%20vivo%20classification%20of%20inflammation%20in%20blood%20vessels%20with%20convolutional%20neural%20networks&rft.btitle=2017%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=McIlroy,%20Stuart&rft.date=2017-05&rft.spage=3022&rft.epage=3027&rft.pages=3022-3027&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN.2017.7966231&rft.eisbn=9781509061822&rft.eisbn_list=1509061827&rft_dat=%3Cieee_CHZPO%3E7966231%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9290662475d36e5f0e36a7b3f1e72995749ff6396f48b780793b7cdaedc18c8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7966231&rfr_iscdi=true