Loading…

Massive MIMO, Non-Orthogonal Multiple Access and Interleave Division Multiple Access

This paper provides an overview on the rationales in incorporating massive multiple-input multiple-output (MIMO), non-orthogonal multiple access (NOMA), and interleave division multiple access (IDMA) in a unified framework. Our emphasis is on multi-user gain that refers to the advantage of allowing...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2017-01, Vol.5, p.14728-14748
Main Authors: Xu, Chongbin, Hu, Yang, Liang, Chulong, Ma, Junjie, Ping, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-a0108a3804396e40f6f3ab073a885c71f9a053beceaed0a56213697f66ad3433
cites cdi_FETCH-LOGICAL-c474t-a0108a3804396e40f6f3ab073a885c71f9a053beceaed0a56213697f66ad3433
container_end_page 14748
container_issue
container_start_page 14728
container_title IEEE access
container_volume 5
creator Xu, Chongbin
Hu, Yang
Liang, Chulong
Ma, Junjie
Ping, Li
description This paper provides an overview on the rationales in incorporating massive multiple-input multiple-output (MIMO), non-orthogonal multiple access (NOMA), and interleave division multiple access (IDMA) in a unified framework. Our emphasis is on multi-user gain that refers to the advantage of allowing multi-user transmission in massive MIMO. Such a gain can potentially offer tens or even hundreds of times of rate increase. The main difficulty in achieving multi-user gain is the reliance on accurate channel state information (CSI) in the existing schemes. With accurate CSI, both OMA and NOMA can deliver performance not far away from capacity. Without accurate CSI, however, most of the existing schemes do not work well. We outline a solution to this difficulty based on IDMA and iterative data-aided channel estimation (DACE). This scheme can offer very high throughput and is robust against the pilot contamination problem. The receiver cost is low, since only maximum ratio combining (MRC) is involved and there is no matrix inversion or decomposition. Under time division duplex, accurate CSI acquired in the up-link can be used to support low-cost down-link solutions, such as zero forcing. These findings offer useful design considerations for future systems.
doi_str_mv 10.1109/ACCESS.2017.2725919
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7974726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7974726</ieee_id><doaj_id>oai_doaj_org_article_5e7a57cea2d54ff49843e5879141672b</doaj_id><sourcerecordid>2455944401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a0108a3804396e40f6f3ab073a885c71f9a053beceaed0a56213697f66ad3433</originalsourceid><addsrcrecordid>eNpdkU1Lw0AQhoMoKNpf0EvAq6n7vdljiV8FYw_tfZkmk7olZutuKvjvjaaIOJcZhvd5B-ZNkiklM0qJuZ0Xxf1qNWOE6hnTTBpqTpILRpXJuOTq9M98nkxi3JGh8mEl9UWyLiFG94FpuSiXN-mL77Jl6F_91nfQpuWh7d2-xXReVRhjCl2dLroeQ4swMHfuw0Xnu_-6q-SsgTbi5Ngvk_XD_bp4yp6Xj4ti_pxVQos-A0JJDjwnghuFgjSq4bAhmkOey0rTxgCRfIMVAtYEpGKUK6MbpaDmgvPLZDHa1h52dh_cG4RP68HZn4UPWwuhd1WLVqIGqQcjVkvRNMLkgqPMtaGCKs02g9f16LUP_v2Asbc7fwjDD6JlQkojhCB0UPFRVQUfY8Dm9yol9jsMO4Zhv8OwxzAGajpSDhF_CW200EzxL8SEg7g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455944401</pqid></control><display><type>article</type><title>Massive MIMO, Non-Orthogonal Multiple Access and Interleave Division Multiple Access</title><source>IEEE Xplore Open Access Journals</source><creator>Xu, Chongbin ; Hu, Yang ; Liang, Chulong ; Ma, Junjie ; Ping, Li</creator><creatorcontrib>Xu, Chongbin ; Hu, Yang ; Liang, Chulong ; Ma, Junjie ; Ping, Li</creatorcontrib><description>This paper provides an overview on the rationales in incorporating massive multiple-input multiple-output (MIMO), non-orthogonal multiple access (NOMA), and interleave division multiple access (IDMA) in a unified framework. Our emphasis is on multi-user gain that refers to the advantage of allowing multi-user transmission in massive MIMO. Such a gain can potentially offer tens or even hundreds of times of rate increase. The main difficulty in achieving multi-user gain is the reliance on accurate channel state information (CSI) in the existing schemes. With accurate CSI, both OMA and NOMA can deliver performance not far away from capacity. Without accurate CSI, however, most of the existing schemes do not work well. We outline a solution to this difficulty based on IDMA and iterative data-aided channel estimation (DACE). This scheme can offer very high throughput and is robust against the pilot contamination problem. The receiver cost is low, since only maximum ratio combining (MRC) is involved and there is no matrix inversion or decomposition. Under time division duplex, accurate CSI acquired in the up-link can be used to support low-cost down-link solutions, such as zero forcing. These findings offer useful design considerations for future systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2725919</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel estimation ; Fading channels ; IDMA ; Interference ; iterative MRC and DACE ; Massive MIMO ; MIMO ; MIMO (control systems) ; NIST ; NOMA ; Nonorthogonal multiple access ; Time division ; Time-frequency analysis</subject><ispartof>IEEE access, 2017-01, Vol.5, p.14728-14748</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a0108a3804396e40f6f3ab073a885c71f9a053beceaed0a56213697f66ad3433</citedby><cites>FETCH-LOGICAL-c474t-a0108a3804396e40f6f3ab073a885c71f9a053beceaed0a56213697f66ad3433</cites><orcidid>0000-0003-2241-8902 ; 0000-0003-1263-5006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7974726$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Xu, Chongbin</creatorcontrib><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Liang, Chulong</creatorcontrib><creatorcontrib>Ma, Junjie</creatorcontrib><creatorcontrib>Ping, Li</creatorcontrib><title>Massive MIMO, Non-Orthogonal Multiple Access and Interleave Division Multiple Access</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper provides an overview on the rationales in incorporating massive multiple-input multiple-output (MIMO), non-orthogonal multiple access (NOMA), and interleave division multiple access (IDMA) in a unified framework. Our emphasis is on multi-user gain that refers to the advantage of allowing multi-user transmission in massive MIMO. Such a gain can potentially offer tens or even hundreds of times of rate increase. The main difficulty in achieving multi-user gain is the reliance on accurate channel state information (CSI) in the existing schemes. With accurate CSI, both OMA and NOMA can deliver performance not far away from capacity. Without accurate CSI, however, most of the existing schemes do not work well. We outline a solution to this difficulty based on IDMA and iterative data-aided channel estimation (DACE). This scheme can offer very high throughput and is robust against the pilot contamination problem. The receiver cost is low, since only maximum ratio combining (MRC) is involved and there is no matrix inversion or decomposition. Under time division duplex, accurate CSI acquired in the up-link can be used to support low-cost down-link solutions, such as zero forcing. These findings offer useful design considerations for future systems.</description><subject>Channel estimation</subject><subject>Fading channels</subject><subject>IDMA</subject><subject>Interference</subject><subject>iterative MRC and DACE</subject><subject>Massive MIMO</subject><subject>MIMO</subject><subject>MIMO (control systems)</subject><subject>NIST</subject><subject>NOMA</subject><subject>Nonorthogonal multiple access</subject><subject>Time division</subject><subject>Time-frequency analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1Lw0AQhoMoKNpf0EvAq6n7vdljiV8FYw_tfZkmk7olZutuKvjvjaaIOJcZhvd5B-ZNkiklM0qJuZ0Xxf1qNWOE6hnTTBpqTpILRpXJuOTq9M98nkxi3JGh8mEl9UWyLiFG94FpuSiXN-mL77Jl6F_91nfQpuWh7d2-xXReVRhjCl2dLroeQ4swMHfuw0Xnu_-6q-SsgTbi5Ngvk_XD_bp4yp6Xj4ti_pxVQos-A0JJDjwnghuFgjSq4bAhmkOey0rTxgCRfIMVAtYEpGKUK6MbpaDmgvPLZDHa1h52dh_cG4RP68HZn4UPWwuhd1WLVqIGqQcjVkvRNMLkgqPMtaGCKs02g9f16LUP_v2Asbc7fwjDD6JlQkojhCB0UPFRVQUfY8Dm9yol9jsMO4Zhv8OwxzAGajpSDhF_CW200EzxL8SEg7g</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Xu, Chongbin</creator><creator>Hu, Yang</creator><creator>Liang, Chulong</creator><creator>Ma, Junjie</creator><creator>Ping, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2241-8902</orcidid><orcidid>https://orcid.org/0000-0003-1263-5006</orcidid></search><sort><creationdate>20170101</creationdate><title>Massive MIMO, Non-Orthogonal Multiple Access and Interleave Division Multiple Access</title><author>Xu, Chongbin ; Hu, Yang ; Liang, Chulong ; Ma, Junjie ; Ping, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a0108a3804396e40f6f3ab073a885c71f9a053beceaed0a56213697f66ad3433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Channel estimation</topic><topic>Fading channels</topic><topic>IDMA</topic><topic>Interference</topic><topic>iterative MRC and DACE</topic><topic>Massive MIMO</topic><topic>MIMO</topic><topic>MIMO (control systems)</topic><topic>NIST</topic><topic>NOMA</topic><topic>Nonorthogonal multiple access</topic><topic>Time division</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chongbin</creatorcontrib><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Liang, Chulong</creatorcontrib><creatorcontrib>Ma, Junjie</creatorcontrib><creatorcontrib>Ping, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chongbin</au><au>Hu, Yang</au><au>Liang, Chulong</au><au>Ma, Junjie</au><au>Ping, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive MIMO, Non-Orthogonal Multiple Access and Interleave Division Multiple Access</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>5</volume><spage>14728</spage><epage>14748</epage><pages>14728-14748</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper provides an overview on the rationales in incorporating massive multiple-input multiple-output (MIMO), non-orthogonal multiple access (NOMA), and interleave division multiple access (IDMA) in a unified framework. Our emphasis is on multi-user gain that refers to the advantage of allowing multi-user transmission in massive MIMO. Such a gain can potentially offer tens or even hundreds of times of rate increase. The main difficulty in achieving multi-user gain is the reliance on accurate channel state information (CSI) in the existing schemes. With accurate CSI, both OMA and NOMA can deliver performance not far away from capacity. Without accurate CSI, however, most of the existing schemes do not work well. We outline a solution to this difficulty based on IDMA and iterative data-aided channel estimation (DACE). This scheme can offer very high throughput and is robust against the pilot contamination problem. The receiver cost is low, since only maximum ratio combining (MRC) is involved and there is no matrix inversion or decomposition. Under time division duplex, accurate CSI acquired in the up-link can be used to support low-cost down-link solutions, such as zero forcing. These findings offer useful design considerations for future systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2725919</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2241-8902</orcidid><orcidid>https://orcid.org/0000-0003-1263-5006</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2017-01, Vol.5, p.14728-14748
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_7974726
source IEEE Xplore Open Access Journals
subjects Channel estimation
Fading channels
IDMA
Interference
iterative MRC and DACE
Massive MIMO
MIMO
MIMO (control systems)
NIST
NOMA
Nonorthogonal multiple access
Time division
Time-frequency analysis
title Massive MIMO, Non-Orthogonal Multiple Access and Interleave Division Multiple Access
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20MIMO,%20Non-Orthogonal%20Multiple%20Access%20and%20Interleave%20Division%20Multiple%20Access&rft.jtitle=IEEE%20access&rft.au=Xu,%20Chongbin&rft.date=2017-01-01&rft.volume=5&rft.spage=14728&rft.epage=14748&rft.pages=14728-14748&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2725919&rft_dat=%3Cproquest_ieee_%3E2455944401%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-a0108a3804396e40f6f3ab073a885c71f9a053beceaed0a56213697f66ad3433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455944401&rft_id=info:pmid/&rft_ieee_id=7974726&rfr_iscdi=true