Loading…

A Human-Humanoid Interaction Through the Use of BCI for Locked-In ALS Patients Using Neuro-Biological Feedback Fusion

This paper illustrates a new architecture for a human-humanoid interaction based on EEG-brain computer interface (EEG-BCI) for patients affected by locked-in syndrome caused by Amyotrophic Lateral Sclerosis (ALS). The proposed architecture is able to recognise users' mental state accordingly to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2018-02, Vol.26 (2), p.487-497
Main Authors: Sorbello, Rosario, Tramonte, Salvatore, Giardina, Marcello Emanuele, La Bella, Vincenzo, Spataro, Rossella, Allison, Brendan, Guger, Christoph, Chella, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-9e904744815f331e6302a3184f66b188c823479792e46b0b34213dd2ee5d38df3
cites cdi_FETCH-LOGICAL-c417t-9e904744815f331e6302a3184f66b188c823479792e46b0b34213dd2ee5d38df3
container_end_page 497
container_issue 2
container_start_page 487
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 26
creator Sorbello, Rosario
Tramonte, Salvatore
Giardina, Marcello Emanuele
La Bella, Vincenzo
Spataro, Rossella
Allison, Brendan
Guger, Christoph
Chella, Antonio
description This paper illustrates a new architecture for a human-humanoid interaction based on EEG-brain computer interface (EEG-BCI) for patients affected by locked-in syndrome caused by Amyotrophic Lateral Sclerosis (ALS). The proposed architecture is able to recognise users' mental state accordingly to the biofeedback factor B f , based on users' attention, intention, and focus, that is used to elicit a robot to perform customised behaviours. Experiments have been conducted with a population of eight subjects: four ALS patients in a near locked-in status with normal ocular movement and four healthy control subjects enrolled for age, education,and computer expertise. The results showed as three ALS patients have completed the task with 96.67% success; the healthy controls with 100% success; the fourth ALS has been excluded from the results for his low general attention during the task; the analysis of B f factor highlights as ALS subjects have shown stronger B f (81.20%) than healthy controls (76.77%). Finally, a post-hoc analysis is provided to show how robotic feedback helps in maintaining focus on expected task. These preliminary data suggest that ALS patients could successfully control a humanoid robot through a BCI architecture, potentially enabling them to conduct some everyday tasks and extend their presence in the environment.
doi_str_mv 10.1109/TNSRE.2017.2728140
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7983438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7983438</ieee_id><sourcerecordid>2001147552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-9e904744815f331e6302a3184f66b188c823479792e46b0b34213dd2ee5d38df3</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhq2Kqny0fwAkZIkLl039ufYeQ0RKpIgiCGfLuzubGDZrsNeH_vs6JOXQi8fSPPNqNA9C55RMKCXVz9X90-PthBGqJkwxTQX5gk6olLogjJKj3Z-LQnBGjtFpjC8kk6VU39Ax04opKcUJSlN8l7Z2KD5e71q8GEYIthmdH_BqE3xab_C4AfwcAfsO38wWuPMBL33zCm2xGPB0-YQf7OhgGGOm3LDG95CCL26c7_3aNbbHc4C2ts0rnqeYg7-jr53tI_w41DP0PL9dze6K5e9fi9l0WTSCqrGooCJCCaGp7DinUHLCLKdadGVZU60bzbhQlaoYiLImNReM8rZlALLluu34Gbre574F_54gjmbrYgN9bwfwKRpaMSYJLyXL6NV_6ItPYcjbGZYPR0W-145ie6oJPsYAnXkLbmvDH0OJ2UkxH1LMToo5SMlDl4foVG-h_Rz5ZyEDF3vAAcBnW1WaC675X882jZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001147552</pqid></control><display><type>article</type><title>A Human-Humanoid Interaction Through the Use of BCI for Locked-In ALS Patients Using Neuro-Biological Feedback Fusion</title><source>Alma/SFX Local Collection</source><creator>Sorbello, Rosario ; Tramonte, Salvatore ; Giardina, Marcello Emanuele ; La Bella, Vincenzo ; Spataro, Rossella ; Allison, Brendan ; Guger, Christoph ; Chella, Antonio</creator><creatorcontrib>Sorbello, Rosario ; Tramonte, Salvatore ; Giardina, Marcello Emanuele ; La Bella, Vincenzo ; Spataro, Rossella ; Allison, Brendan ; Guger, Christoph ; Chella, Antonio</creatorcontrib><description>This paper illustrates a new architecture for a human-humanoid interaction based on EEG-brain computer interface (EEG-BCI) for patients affected by locked-in syndrome caused by Amyotrophic Lateral Sclerosis (ALS). The proposed architecture is able to recognise users' mental state accordingly to the biofeedback factor B f , based on users' attention, intention, and focus, that is used to elicit a robot to perform customised behaviours. Experiments have been conducted with a population of eight subjects: four ALS patients in a near locked-in status with normal ocular movement and four healthy control subjects enrolled for age, education,and computer expertise. The results showed as three ALS patients have completed the task with 96.67% success; the healthy controls with 100% success; the fourth ALS has been excluded from the results for his low general attention during the task; the analysis of B f factor highlights as ALS subjects have shown stronger B f (81.20%) than healthy controls (76.77%). Finally, a post-hoc analysis is provided to show how robotic feedback helps in maintaining focus on expected task. These preliminary data suggest that ALS patients could successfully control a humanoid robot through a BCI architecture, potentially enabling them to conduct some everyday tasks and extend their presence in the environment.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2017.2728140</identifier><identifier>PMID: 28727554</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithms ; ALS patients ; Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - rehabilitation ; Attention ; Attention task ; BCI ; Biofeedback ; Biofeedback, Psychology - methods ; Brain ; Brain-Computer Interfaces ; Computer applications ; Computer architecture ; EEG ; Electroencephalography ; Entropy ; Event-Related Potentials, P300 ; Eye Movements ; Feature extraction ; Feedback ; Female ; Healthy Volunteers ; Human-computer interface ; human-humanoid robot interaction ; Humanoid ; Humanoid robots ; Humans ; Implants ; locked-in patients ; Male ; Motivation ; neuro-biological feedback fusion ; Patients ; Prosthesis Design ; Psychomotor Performance ; Quadriplegia - rehabilitation ; Robotics ; Stress</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2018-02, Vol.26 (2), p.487-497</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-9e904744815f331e6302a3184f66b188c823479792e46b0b34213dd2ee5d38df3</citedby><cites>FETCH-LOGICAL-c417t-9e904744815f331e6302a3184f66b188c823479792e46b0b34213dd2ee5d38df3</cites><orcidid>0000-0002-9906-7074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28727554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sorbello, Rosario</creatorcontrib><creatorcontrib>Tramonte, Salvatore</creatorcontrib><creatorcontrib>Giardina, Marcello Emanuele</creatorcontrib><creatorcontrib>La Bella, Vincenzo</creatorcontrib><creatorcontrib>Spataro, Rossella</creatorcontrib><creatorcontrib>Allison, Brendan</creatorcontrib><creatorcontrib>Guger, Christoph</creatorcontrib><creatorcontrib>Chella, Antonio</creatorcontrib><title>A Human-Humanoid Interaction Through the Use of BCI for Locked-In ALS Patients Using Neuro-Biological Feedback Fusion</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>This paper illustrates a new architecture for a human-humanoid interaction based on EEG-brain computer interface (EEG-BCI) for patients affected by locked-in syndrome caused by Amyotrophic Lateral Sclerosis (ALS). The proposed architecture is able to recognise users' mental state accordingly to the biofeedback factor B f , based on users' attention, intention, and focus, that is used to elicit a robot to perform customised behaviours. Experiments have been conducted with a population of eight subjects: four ALS patients in a near locked-in status with normal ocular movement and four healthy control subjects enrolled for age, education,and computer expertise. The results showed as three ALS patients have completed the task with 96.67% success; the healthy controls with 100% success; the fourth ALS has been excluded from the results for his low general attention during the task; the analysis of B f factor highlights as ALS subjects have shown stronger B f (81.20%) than healthy controls (76.77%). Finally, a post-hoc analysis is provided to show how robotic feedback helps in maintaining focus on expected task. These preliminary data suggest that ALS patients could successfully control a humanoid robot through a BCI architecture, potentially enabling them to conduct some everyday tasks and extend their presence in the environment.</description><subject>Adult</subject><subject>Algorithms</subject><subject>ALS patients</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - rehabilitation</subject><subject>Attention</subject><subject>Attention task</subject><subject>BCI</subject><subject>Biofeedback</subject><subject>Biofeedback, Psychology - methods</subject><subject>Brain</subject><subject>Brain-Computer Interfaces</subject><subject>Computer applications</subject><subject>Computer architecture</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Entropy</subject><subject>Event-Related Potentials, P300</subject><subject>Eye Movements</subject><subject>Feature extraction</subject><subject>Feedback</subject><subject>Female</subject><subject>Healthy Volunteers</subject><subject>Human-computer interface</subject><subject>human-humanoid robot interaction</subject><subject>Humanoid</subject><subject>Humanoid robots</subject><subject>Humans</subject><subject>Implants</subject><subject>locked-in patients</subject><subject>Male</subject><subject>Motivation</subject><subject>neuro-biological feedback fusion</subject><subject>Patients</subject><subject>Prosthesis Design</subject><subject>Psychomotor Performance</subject><subject>Quadriplegia - rehabilitation</subject><subject>Robotics</subject><subject>Stress</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PGzEQhq2Kqny0fwAkZIkLl039ufYeQ0RKpIgiCGfLuzubGDZrsNeH_vs6JOXQi8fSPPNqNA9C55RMKCXVz9X90-PthBGqJkwxTQX5gk6olLogjJKj3Z-LQnBGjtFpjC8kk6VU39Ax04opKcUJSlN8l7Z2KD5e71q8GEYIthmdH_BqE3xab_C4AfwcAfsO38wWuPMBL33zCm2xGPB0-YQf7OhgGGOm3LDG95CCL26c7_3aNbbHc4C2ts0rnqeYg7-jr53tI_w41DP0PL9dze6K5e9fi9l0WTSCqrGooCJCCaGp7DinUHLCLKdadGVZU60bzbhQlaoYiLImNReM8rZlALLluu34Gbre574F_54gjmbrYgN9bwfwKRpaMSYJLyXL6NV_6ItPYcjbGZYPR0W-145ie6oJPsYAnXkLbmvDH0OJ2UkxH1LMToo5SMlDl4foVG-h_Rz5ZyEDF3vAAcBnW1WaC675X882jZM</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Sorbello, Rosario</creator><creator>Tramonte, Salvatore</creator><creator>Giardina, Marcello Emanuele</creator><creator>La Bella, Vincenzo</creator><creator>Spataro, Rossella</creator><creator>Allison, Brendan</creator><creator>Guger, Christoph</creator><creator>Chella, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9906-7074</orcidid></search><sort><creationdate>20180201</creationdate><title>A Human-Humanoid Interaction Through the Use of BCI for Locked-In ALS Patients Using Neuro-Biological Feedback Fusion</title><author>Sorbello, Rosario ; Tramonte, Salvatore ; Giardina, Marcello Emanuele ; La Bella, Vincenzo ; Spataro, Rossella ; Allison, Brendan ; Guger, Christoph ; Chella, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-9e904744815f331e6302a3184f66b188c823479792e46b0b34213dd2ee5d38df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>ALS patients</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - rehabilitation</topic><topic>Attention</topic><topic>Attention task</topic><topic>BCI</topic><topic>Biofeedback</topic><topic>Biofeedback, Psychology - methods</topic><topic>Brain</topic><topic>Brain-Computer Interfaces</topic><topic>Computer applications</topic><topic>Computer architecture</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Entropy</topic><topic>Event-Related Potentials, P300</topic><topic>Eye Movements</topic><topic>Feature extraction</topic><topic>Feedback</topic><topic>Female</topic><topic>Healthy Volunteers</topic><topic>Human-computer interface</topic><topic>human-humanoid robot interaction</topic><topic>Humanoid</topic><topic>Humanoid robots</topic><topic>Humans</topic><topic>Implants</topic><topic>locked-in patients</topic><topic>Male</topic><topic>Motivation</topic><topic>neuro-biological feedback fusion</topic><topic>Patients</topic><topic>Prosthesis Design</topic><topic>Psychomotor Performance</topic><topic>Quadriplegia - rehabilitation</topic><topic>Robotics</topic><topic>Stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorbello, Rosario</creatorcontrib><creatorcontrib>Tramonte, Salvatore</creatorcontrib><creatorcontrib>Giardina, Marcello Emanuele</creatorcontrib><creatorcontrib>La Bella, Vincenzo</creatorcontrib><creatorcontrib>Spataro, Rossella</creatorcontrib><creatorcontrib>Allison, Brendan</creatorcontrib><creatorcontrib>Guger, Christoph</creatorcontrib><creatorcontrib>Chella, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorbello, Rosario</au><au>Tramonte, Salvatore</au><au>Giardina, Marcello Emanuele</au><au>La Bella, Vincenzo</au><au>Spataro, Rossella</au><au>Allison, Brendan</au><au>Guger, Christoph</au><au>Chella, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Human-Humanoid Interaction Through the Use of BCI for Locked-In ALS Patients Using Neuro-Biological Feedback Fusion</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>26</volume><issue>2</issue><spage>487</spage><epage>497</epage><pages>487-497</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>This paper illustrates a new architecture for a human-humanoid interaction based on EEG-brain computer interface (EEG-BCI) for patients affected by locked-in syndrome caused by Amyotrophic Lateral Sclerosis (ALS). The proposed architecture is able to recognise users' mental state accordingly to the biofeedback factor B f , based on users' attention, intention, and focus, that is used to elicit a robot to perform customised behaviours. Experiments have been conducted with a population of eight subjects: four ALS patients in a near locked-in status with normal ocular movement and four healthy control subjects enrolled for age, education,and computer expertise. The results showed as three ALS patients have completed the task with 96.67% success; the healthy controls with 100% success; the fourth ALS has been excluded from the results for his low general attention during the task; the analysis of B f factor highlights as ALS subjects have shown stronger B f (81.20%) than healthy controls (76.77%). Finally, a post-hoc analysis is provided to show how robotic feedback helps in maintaining focus on expected task. These preliminary data suggest that ALS patients could successfully control a humanoid robot through a BCI architecture, potentially enabling them to conduct some everyday tasks and extend their presence in the environment.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28727554</pmid><doi>10.1109/TNSRE.2017.2728140</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9906-7074</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2018-02, Vol.26 (2), p.487-497
issn 1534-4320
1558-0210
language eng
recordid cdi_ieee_primary_7983438
source Alma/SFX Local Collection
subjects Adult
Algorithms
ALS patients
Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - rehabilitation
Attention
Attention task
BCI
Biofeedback
Biofeedback, Psychology - methods
Brain
Brain-Computer Interfaces
Computer applications
Computer architecture
EEG
Electroencephalography
Entropy
Event-Related Potentials, P300
Eye Movements
Feature extraction
Feedback
Female
Healthy Volunteers
Human-computer interface
human-humanoid robot interaction
Humanoid
Humanoid robots
Humans
Implants
locked-in patients
Male
Motivation
neuro-biological feedback fusion
Patients
Prosthesis Design
Psychomotor Performance
Quadriplegia - rehabilitation
Robotics
Stress
title A Human-Humanoid Interaction Through the Use of BCI for Locked-In ALS Patients Using Neuro-Biological Feedback Fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Human-Humanoid%20Interaction%20Through%20the%20Use%20of%20BCI%20for%20Locked-In%20ALS%20Patients%20Using%20Neuro-Biological%20Feedback%20Fusion&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Sorbello,%20Rosario&rft.date=2018-02-01&rft.volume=26&rft.issue=2&rft.spage=487&rft.epage=497&rft.pages=487-497&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2017.2728140&rft_dat=%3Cproquest_ieee_%3E2001147552%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-9e904744815f331e6302a3184f66b188c823479792e46b0b34213dd2ee5d38df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2001147552&rft_id=info:pmid/28727554&rft_ieee_id=7983438&rfr_iscdi=true