Loading…
Learning radio maps for UAV-aided wireless networks: A segmented regression approach
This paper targets the promising area of unmanned aerial vehicle (UAV)-assisted wireless networking, by which communication-enabled robots operate as flying wireless relays to help fill coverage or capacity gaps in the networks. In order to feed the UAV's autonomous path planning and positionin...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper targets the promising area of unmanned aerial vehicle (UAV)-assisted wireless networking, by which communication-enabled robots operate as flying wireless relays to help fill coverage or capacity gaps in the networks. In order to feed the UAV's autonomous path planning and positioning algorithm, a radio map is exploited, which must be, in practice, reconstructed from UAV-based measurements from a limited subset of locations. Unlike existing methods that ignore the segmented propagation structure of the radio map, this paper proposes a machine learning approach to reconstruct a finely structured map by exploiting both segmentation and signal strength models. A data clustering and parameter estimation problem is formulated using a maximum likelihood approach, and solved by an iterative clustering and regression algorithm. Numerical results demonstrate significant performance advantage in radio map reconstruction as compared to the baseline. |
---|---|
ISSN: | 1938-1883 |
DOI: | 10.1109/ICC.2017.7997333 |