Loading…
Ultrafast Ultrasound Imaging Using Combined Transmissions With Cross-Coherence-Based Reconstruction
Plane-wave-based ultrafast imaging has become the prevalent technique for non-conventional ultrasound imaging. The image quality, especially in terms of the suppression of artifacts, is generally compromised by reducing the number of transmissions for a higher frame rate. We hereby propose a new ult...
Saved in:
Published in: | IEEE transactions on medical imaging 2018-02, Vol.37 (2), p.337-348 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plane-wave-based ultrafast imaging has become the prevalent technique for non-conventional ultrasound imaging. The image quality, especially in terms of the suppression of artifacts, is generally compromised by reducing the number of transmissions for a higher frame rate. We hereby propose a new ultrafast imaging framework that reduces not only the side lobe artifacts but also the axial lobe artifacts using combined transmissions with a new coherence-based factor. The results from simulations, in vitro wire phantoms, the ex vivo porcine artery, and the in vivo porcine heart show that our proposed methodology greatly reduced the axial lobe artifact by 25±5 dB compared with coherent plane-wave compounding (CPWC), which was considered as the ultrafast imaging standard, and suppressed side lobe artifacts by 15 ± 5 dB compared with CPWC and coherent spherical-wave compounding. The reduction of artifacts in our proposed ultrafast imaging framework led to a better boundary delineation of soft tissues than CPWC. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2017.2736423 |