Loading…
Motor Anomaly Detection for Unmanned Aerial Vehicles Using Reinforcement Learning
Unmanned aerial vehicles (UAVs) are used in many fields including weather observation, farming, infrastructure inspection, and monitoring of disaster areas. However, the currently available UAVs are prone to crashing. The goal of this paper is the development of an anomaly detection system to preven...
Saved in:
Published in: | IEEE internet of things journal 2018-08, Vol.5 (4), p.2315-2322 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Unmanned aerial vehicles (UAVs) are used in many fields including weather observation, farming, infrastructure inspection, and monitoring of disaster areas. However, the currently available UAVs are prone to crashing. The goal of this paper is the development of an anomaly detection system to prevent the motor of the drone from operating at abnormal temperatures. In this anomaly detection system, the temperature of the motor is recorded using DS18B20 sensors. Then, using reinforcement learning, the motor is judged to be operating abnormally by a Raspberry Pi processing unit. A specially built user interface allows the activity of the Raspberry Pi to be tracked on a Tablet for observation purposes. The proposed system provides the ability to land a drone when the motor temperature exceeds an automatically generated threshold. The experimental results confirm that the proposed system can safely control the drone using information obtained from temperature sensors attached to the motor. |
---|---|
ISSN: | 2327-4662 2327-4662 |
DOI: | 10.1109/JIOT.2017.2737479 |