Loading…

Model predictive control of deep brain stimulation for Parkinsonian tremor

Deep brain stimulation (DBS) is an established therapy for a variety of neurological disorders, including Parkinson's disease, essential tremor, and dystonia. Recent DBS research has pursued methods for closed-loop control to provide more effective management of symptoms, side effects, and devi...

Full description

Saved in:
Bibliographic Details
Main Authors: Haddock, Andrew, Velisar, Anca, Herron, Jeffrey, Bronte-Stewart, Helen, Chizeck, Howard J.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c222t-4e2fec8fbb2b9fa45f05ad4d2500775a570206ea5390fc22a5516469dfd009bf3
cites
container_end_page 362
container_issue
container_start_page 358
container_title
container_volume
creator Haddock, Andrew
Velisar, Anca
Herron, Jeffrey
Bronte-Stewart, Helen
Chizeck, Howard J.
description Deep brain stimulation (DBS) is an established therapy for a variety of neurological disorders, including Parkinson's disease, essential tremor, and dystonia. Recent DBS research has pursued methods for closed-loop control to provide more effective management of symptoms, side effects, and device power consumption. Most closed-loop DBS (CLDBS) studies to date use simple threshold-based controllers to trigger DBS and, as a result, any optimization of symptoms and device power consumption is only incident. In this paper, we demonstrate the utility of an approach based on identifying patient-specific models of symptom response to DBS and using these models to formulate a model predictive control strategy for CLDBS, which explicitly solves an optimization problem. We simulate the model predictive controller for various parameters and find that this approach yields a range of performances for the competing objectives of minimizing patient symptoms and device power consumption. We examine this fundamental tradeoff using the concept of Pareto optimality and conclude with a discussion about incorporating patient, clinician, and other stakeholder preferences in the design of CLDBS systems.
doi_str_mv 10.1109/NER.2017.8008364
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8008364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8008364</ieee_id><sourcerecordid>8008364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-4e2fec8fbb2b9fa45f05ad4d2500775a570206ea5390fc22a5516469dfd009bf3</originalsourceid><addsrcrecordid>eNotj8tKxDAUQKMgOI6zF9zkB1pvXm2ylGF8MTqD6HpImxuItklJo-DfKzirszoHDiFXDGrGwNy8bF5rDqytNYAWjTwhF0yBAdmA0KdkwYzUlVBKnpPVPH8AgOAgmdEL8vScHA50yuhCX8I30j7FktNAk6cOcaJdtiHSuYTxa7AlpEh9ynRv82eIc4rBRloyjilfkjNvhxlXRy7J-93mbf1QbXf3j-vbbdVzzkslkXvste863hlvpfKgrJOOK4C2VVa1wKFBq4QB_6dYpVgjG-O8AzCdF0ty_d8NiHiYchht_jkc18UvavdNhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Model predictive control of deep brain stimulation for Parkinsonian tremor</title><source>IEEE Xplore All Conference Series</source><creator>Haddock, Andrew ; Velisar, Anca ; Herron, Jeffrey ; Bronte-Stewart, Helen ; Chizeck, Howard J.</creator><creatorcontrib>Haddock, Andrew ; Velisar, Anca ; Herron, Jeffrey ; Bronte-Stewart, Helen ; Chizeck, Howard J.</creatorcontrib><description>Deep brain stimulation (DBS) is an established therapy for a variety of neurological disorders, including Parkinson's disease, essential tremor, and dystonia. Recent DBS research has pursued methods for closed-loop control to provide more effective management of symptoms, side effects, and device power consumption. Most closed-loop DBS (CLDBS) studies to date use simple threshold-based controllers to trigger DBS and, as a result, any optimization of symptoms and device power consumption is only incident. In this paper, we demonstrate the utility of an approach based on identifying patient-specific models of symptom response to DBS and using these models to formulate a model predictive control strategy for CLDBS, which explicitly solves an optimization problem. We simulate the model predictive controller for various parameters and find that this approach yields a range of performances for the competing objectives of minimizing patient symptoms and device power consumption. We examine this fundamental tradeoff using the concept of Pareto optimality and conclude with a discussion about incorporating patient, clinician, and other stakeholder preferences in the design of CLDBS systems.</description><identifier>EISSN: 1948-3554</identifier><identifier>EISBN: 1509046038</identifier><identifier>EISBN: 9781509046034</identifier><identifier>DOI: 10.1109/NER.2017.8008364</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Data models ; Optimization ; Predictive control ; Predictive models ; Satellite broadcasting ; Switches</subject><ispartof>2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), 2017, p.358-362</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-4e2fec8fbb2b9fa45f05ad4d2500775a570206ea5390fc22a5516469dfd009bf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8008364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8008364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haddock, Andrew</creatorcontrib><creatorcontrib>Velisar, Anca</creatorcontrib><creatorcontrib>Herron, Jeffrey</creatorcontrib><creatorcontrib>Bronte-Stewart, Helen</creatorcontrib><creatorcontrib>Chizeck, Howard J.</creatorcontrib><title>Model predictive control of deep brain stimulation for Parkinsonian tremor</title><title>2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)</title><addtitle>NER</addtitle><description>Deep brain stimulation (DBS) is an established therapy for a variety of neurological disorders, including Parkinson's disease, essential tremor, and dystonia. Recent DBS research has pursued methods for closed-loop control to provide more effective management of symptoms, side effects, and device power consumption. Most closed-loop DBS (CLDBS) studies to date use simple threshold-based controllers to trigger DBS and, as a result, any optimization of symptoms and device power consumption is only incident. In this paper, we demonstrate the utility of an approach based on identifying patient-specific models of symptom response to DBS and using these models to formulate a model predictive control strategy for CLDBS, which explicitly solves an optimization problem. We simulate the model predictive controller for various parameters and find that this approach yields a range of performances for the competing objectives of minimizing patient symptoms and device power consumption. We examine this fundamental tradeoff using the concept of Pareto optimality and conclude with a discussion about incorporating patient, clinician, and other stakeholder preferences in the design of CLDBS systems.</description><subject>Biological system modeling</subject><subject>Data models</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Satellite broadcasting</subject><subject>Switches</subject><issn>1948-3554</issn><isbn>1509046038</isbn><isbn>9781509046034</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKxDAUQKMgOI6zF9zkB1pvXm2ylGF8MTqD6HpImxuItklJo-DfKzirszoHDiFXDGrGwNy8bF5rDqytNYAWjTwhF0yBAdmA0KdkwYzUlVBKnpPVPH8AgOAgmdEL8vScHA50yuhCX8I30j7FktNAk6cOcaJdtiHSuYTxa7AlpEh9ynRv82eIc4rBRloyjilfkjNvhxlXRy7J-93mbf1QbXf3j-vbbdVzzkslkXvste863hlvpfKgrJOOK4C2VVa1wKFBq4QB_6dYpVgjG-O8AzCdF0ty_d8NiHiYchht_jkc18UvavdNhA</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Haddock, Andrew</creator><creator>Velisar, Anca</creator><creator>Herron, Jeffrey</creator><creator>Bronte-Stewart, Helen</creator><creator>Chizeck, Howard J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201705</creationdate><title>Model predictive control of deep brain stimulation for Parkinsonian tremor</title><author>Haddock, Andrew ; Velisar, Anca ; Herron, Jeffrey ; Bronte-Stewart, Helen ; Chizeck, Howard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-4e2fec8fbb2b9fa45f05ad4d2500775a570206ea5390fc22a5516469dfd009bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological system modeling</topic><topic>Data models</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Satellite broadcasting</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Haddock, Andrew</creatorcontrib><creatorcontrib>Velisar, Anca</creatorcontrib><creatorcontrib>Herron, Jeffrey</creatorcontrib><creatorcontrib>Bronte-Stewart, Helen</creatorcontrib><creatorcontrib>Chizeck, Howard J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haddock, Andrew</au><au>Velisar, Anca</au><au>Herron, Jeffrey</au><au>Bronte-Stewart, Helen</au><au>Chizeck, Howard J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Model predictive control of deep brain stimulation for Parkinsonian tremor</atitle><btitle>2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)</btitle><stitle>NER</stitle><date>2017-05</date><risdate>2017</risdate><spage>358</spage><epage>362</epage><pages>358-362</pages><eissn>1948-3554</eissn><eisbn>1509046038</eisbn><eisbn>9781509046034</eisbn><abstract>Deep brain stimulation (DBS) is an established therapy for a variety of neurological disorders, including Parkinson's disease, essential tremor, and dystonia. Recent DBS research has pursued methods for closed-loop control to provide more effective management of symptoms, side effects, and device power consumption. Most closed-loop DBS (CLDBS) studies to date use simple threshold-based controllers to trigger DBS and, as a result, any optimization of symptoms and device power consumption is only incident. In this paper, we demonstrate the utility of an approach based on identifying patient-specific models of symptom response to DBS and using these models to formulate a model predictive control strategy for CLDBS, which explicitly solves an optimization problem. We simulate the model predictive controller for various parameters and find that this approach yields a range of performances for the competing objectives of minimizing patient symptoms and device power consumption. We examine this fundamental tradeoff using the concept of Pareto optimality and conclude with a discussion about incorporating patient, clinician, and other stakeholder preferences in the design of CLDBS systems.</abstract><pub>IEEE</pub><doi>10.1109/NER.2017.8008364</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1948-3554
ispartof 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), 2017, p.358-362
issn 1948-3554
language eng
recordid cdi_ieee_primary_8008364
source IEEE Xplore All Conference Series
subjects Biological system modeling
Data models
Optimization
Predictive control
Predictive models
Satellite broadcasting
Switches
title Model predictive control of deep brain stimulation for Parkinsonian tremor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Model%20predictive%20control%20of%20deep%20brain%20stimulation%20for%20Parkinsonian%20tremor&rft.btitle=2017%208th%20International%20IEEE/EMBS%20Conference%20on%20Neural%20Engineering%20(NER)&rft.au=Haddock,%20Andrew&rft.date=2017-05&rft.spage=358&rft.epage=362&rft.pages=358-362&rft.eissn=1948-3554&rft_id=info:doi/10.1109/NER.2017.8008364&rft.eisbn=1509046038&rft.eisbn_list=9781509046034&rft_dat=%3Cieee_CHZPO%3E8008364%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-4e2fec8fbb2b9fa45f05ad4d2500775a570206ea5390fc22a5516469dfd009bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8008364&rfr_iscdi=true