Loading…
Model predictive control of deep brain stimulation for Parkinsonian tremor
Deep brain stimulation (DBS) is an established therapy for a variety of neurological disorders, including Parkinson's disease, essential tremor, and dystonia. Recent DBS research has pursued methods for closed-loop control to provide more effective management of symptoms, side effects, and devi...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c222t-4e2fec8fbb2b9fa45f05ad4d2500775a570206ea5390fc22a5516469dfd009bf3 |
---|---|
cites | |
container_end_page | 362 |
container_issue | |
container_start_page | 358 |
container_title | |
container_volume | |
creator | Haddock, Andrew Velisar, Anca Herron, Jeffrey Bronte-Stewart, Helen Chizeck, Howard J. |
description | Deep brain stimulation (DBS) is an established therapy for a variety of neurological disorders, including Parkinson's disease, essential tremor, and dystonia. Recent DBS research has pursued methods for closed-loop control to provide more effective management of symptoms, side effects, and device power consumption. Most closed-loop DBS (CLDBS) studies to date use simple threshold-based controllers to trigger DBS and, as a result, any optimization of symptoms and device power consumption is only incident. In this paper, we demonstrate the utility of an approach based on identifying patient-specific models of symptom response to DBS and using these models to formulate a model predictive control strategy for CLDBS, which explicitly solves an optimization problem. We simulate the model predictive controller for various parameters and find that this approach yields a range of performances for the competing objectives of minimizing patient symptoms and device power consumption. We examine this fundamental tradeoff using the concept of Pareto optimality and conclude with a discussion about incorporating patient, clinician, and other stakeholder preferences in the design of CLDBS systems. |
doi_str_mv | 10.1109/NER.2017.8008364 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8008364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8008364</ieee_id><sourcerecordid>8008364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-4e2fec8fbb2b9fa45f05ad4d2500775a570206ea5390fc22a5516469dfd009bf3</originalsourceid><addsrcrecordid>eNotj8tKxDAUQKMgOI6zF9zkB1pvXm2ylGF8MTqD6HpImxuItklJo-DfKzirszoHDiFXDGrGwNy8bF5rDqytNYAWjTwhF0yBAdmA0KdkwYzUlVBKnpPVPH8AgOAgmdEL8vScHA50yuhCX8I30j7FktNAk6cOcaJdtiHSuYTxa7AlpEh9ynRv82eIc4rBRloyjilfkjNvhxlXRy7J-93mbf1QbXf3j-vbbdVzzkslkXvste863hlvpfKgrJOOK4C2VVa1wKFBq4QB_6dYpVgjG-O8AzCdF0ty_d8NiHiYchht_jkc18UvavdNhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Model predictive control of deep brain stimulation for Parkinsonian tremor</title><source>IEEE Xplore All Conference Series</source><creator>Haddock, Andrew ; Velisar, Anca ; Herron, Jeffrey ; Bronte-Stewart, Helen ; Chizeck, Howard J.</creator><creatorcontrib>Haddock, Andrew ; Velisar, Anca ; Herron, Jeffrey ; Bronte-Stewart, Helen ; Chizeck, Howard J.</creatorcontrib><description>Deep brain stimulation (DBS) is an established therapy for a variety of neurological disorders, including Parkinson's disease, essential tremor, and dystonia. Recent DBS research has pursued methods for closed-loop control to provide more effective management of symptoms, side effects, and device power consumption. Most closed-loop DBS (CLDBS) studies to date use simple threshold-based controllers to trigger DBS and, as a result, any optimization of symptoms and device power consumption is only incident. In this paper, we demonstrate the utility of an approach based on identifying patient-specific models of symptom response to DBS and using these models to formulate a model predictive control strategy for CLDBS, which explicitly solves an optimization problem. We simulate the model predictive controller for various parameters and find that this approach yields a range of performances for the competing objectives of minimizing patient symptoms and device power consumption. We examine this fundamental tradeoff using the concept of Pareto optimality and conclude with a discussion about incorporating patient, clinician, and other stakeholder preferences in the design of CLDBS systems.</description><identifier>EISSN: 1948-3554</identifier><identifier>EISBN: 1509046038</identifier><identifier>EISBN: 9781509046034</identifier><identifier>DOI: 10.1109/NER.2017.8008364</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Data models ; Optimization ; Predictive control ; Predictive models ; Satellite broadcasting ; Switches</subject><ispartof>2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), 2017, p.358-362</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-4e2fec8fbb2b9fa45f05ad4d2500775a570206ea5390fc22a5516469dfd009bf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8008364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8008364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haddock, Andrew</creatorcontrib><creatorcontrib>Velisar, Anca</creatorcontrib><creatorcontrib>Herron, Jeffrey</creatorcontrib><creatorcontrib>Bronte-Stewart, Helen</creatorcontrib><creatorcontrib>Chizeck, Howard J.</creatorcontrib><title>Model predictive control of deep brain stimulation for Parkinsonian tremor</title><title>2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)</title><addtitle>NER</addtitle><description>Deep brain stimulation (DBS) is an established therapy for a variety of neurological disorders, including Parkinson's disease, essential tremor, and dystonia. Recent DBS research has pursued methods for closed-loop control to provide more effective management of symptoms, side effects, and device power consumption. Most closed-loop DBS (CLDBS) studies to date use simple threshold-based controllers to trigger DBS and, as a result, any optimization of symptoms and device power consumption is only incident. In this paper, we demonstrate the utility of an approach based on identifying patient-specific models of symptom response to DBS and using these models to formulate a model predictive control strategy for CLDBS, which explicitly solves an optimization problem. We simulate the model predictive controller for various parameters and find that this approach yields a range of performances for the competing objectives of minimizing patient symptoms and device power consumption. We examine this fundamental tradeoff using the concept of Pareto optimality and conclude with a discussion about incorporating patient, clinician, and other stakeholder preferences in the design of CLDBS systems.</description><subject>Biological system modeling</subject><subject>Data models</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Satellite broadcasting</subject><subject>Switches</subject><issn>1948-3554</issn><isbn>1509046038</isbn><isbn>9781509046034</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKxDAUQKMgOI6zF9zkB1pvXm2ylGF8MTqD6HpImxuItklJo-DfKzirszoHDiFXDGrGwNy8bF5rDqytNYAWjTwhF0yBAdmA0KdkwYzUlVBKnpPVPH8AgOAgmdEL8vScHA50yuhCX8I30j7FktNAk6cOcaJdtiHSuYTxa7AlpEh9ynRv82eIc4rBRloyjilfkjNvhxlXRy7J-93mbf1QbXf3j-vbbdVzzkslkXvste863hlvpfKgrJOOK4C2VVa1wKFBq4QB_6dYpVgjG-O8AzCdF0ty_d8NiHiYchht_jkc18UvavdNhA</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Haddock, Andrew</creator><creator>Velisar, Anca</creator><creator>Herron, Jeffrey</creator><creator>Bronte-Stewart, Helen</creator><creator>Chizeck, Howard J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201705</creationdate><title>Model predictive control of deep brain stimulation for Parkinsonian tremor</title><author>Haddock, Andrew ; Velisar, Anca ; Herron, Jeffrey ; Bronte-Stewart, Helen ; Chizeck, Howard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-4e2fec8fbb2b9fa45f05ad4d2500775a570206ea5390fc22a5516469dfd009bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological system modeling</topic><topic>Data models</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Satellite broadcasting</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Haddock, Andrew</creatorcontrib><creatorcontrib>Velisar, Anca</creatorcontrib><creatorcontrib>Herron, Jeffrey</creatorcontrib><creatorcontrib>Bronte-Stewart, Helen</creatorcontrib><creatorcontrib>Chizeck, Howard J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haddock, Andrew</au><au>Velisar, Anca</au><au>Herron, Jeffrey</au><au>Bronte-Stewart, Helen</au><au>Chizeck, Howard J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Model predictive control of deep brain stimulation for Parkinsonian tremor</atitle><btitle>2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)</btitle><stitle>NER</stitle><date>2017-05</date><risdate>2017</risdate><spage>358</spage><epage>362</epage><pages>358-362</pages><eissn>1948-3554</eissn><eisbn>1509046038</eisbn><eisbn>9781509046034</eisbn><abstract>Deep brain stimulation (DBS) is an established therapy for a variety of neurological disorders, including Parkinson's disease, essential tremor, and dystonia. Recent DBS research has pursued methods for closed-loop control to provide more effective management of symptoms, side effects, and device power consumption. Most closed-loop DBS (CLDBS) studies to date use simple threshold-based controllers to trigger DBS and, as a result, any optimization of symptoms and device power consumption is only incident. In this paper, we demonstrate the utility of an approach based on identifying patient-specific models of symptom response to DBS and using these models to formulate a model predictive control strategy for CLDBS, which explicitly solves an optimization problem. We simulate the model predictive controller for various parameters and find that this approach yields a range of performances for the competing objectives of minimizing patient symptoms and device power consumption. We examine this fundamental tradeoff using the concept of Pareto optimality and conclude with a discussion about incorporating patient, clinician, and other stakeholder preferences in the design of CLDBS systems.</abstract><pub>IEEE</pub><doi>10.1109/NER.2017.8008364</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1948-3554 |
ispartof | 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), 2017, p.358-362 |
issn | 1948-3554 |
language | eng |
recordid | cdi_ieee_primary_8008364 |
source | IEEE Xplore All Conference Series |
subjects | Biological system modeling Data models Optimization Predictive control Predictive models Satellite broadcasting Switches |
title | Model predictive control of deep brain stimulation for Parkinsonian tremor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Model%20predictive%20control%20of%20deep%20brain%20stimulation%20for%20Parkinsonian%20tremor&rft.btitle=2017%208th%20International%20IEEE/EMBS%20Conference%20on%20Neural%20Engineering%20(NER)&rft.au=Haddock,%20Andrew&rft.date=2017-05&rft.spage=358&rft.epage=362&rft.pages=358-362&rft.eissn=1948-3554&rft_id=info:doi/10.1109/NER.2017.8008364&rft.eisbn=1509046038&rft.eisbn_list=9781509046034&rft_dat=%3Cieee_CHZPO%3E8008364%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-4e2fec8fbb2b9fa45f05ad4d2500775a570206ea5390fc22a5516469dfd009bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8008364&rfr_iscdi=true |