Loading…
Confocal vessel structure segmentation with optimized feature bank and random forests
In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG)...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c299t-60989f9665344e3a394bf8a3e64fde5d333cf05543209175a280d15ebea437fa3 |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Kassim, Yasmin M. Prasath, V.B. Surya Glinskii, Olga V. Glinsky, Vladislav V. Huxley, Virginia H. Palaniappan, Kannappan |
description | In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG), oriented second derivative, line detector and intensity masked with LoG scale map. we obtain better segmentation results in challenging imaging conditions. We obtain binary segmentations using random forest classifier trained on physiologists marked ground-truth. Experimental results on mice dura mater confocal microscopy vessel segmentations indicate that we obtain better results compared to global segmentation approaches. |
doi_str_mv | 10.1109/AIPR.2016.8010580 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8010580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8010580</ieee_id><sourcerecordid>8010580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-60989f9665344e3a394bf8a3e64fde5d333cf05543209175a280d15ebea437fa3</originalsourceid><addsrcrecordid>eNotkM1KAzEURqMgWGsfQNzkBWa8yU0yybIMagsFRey6ZGZudHR-yiRV9OkV7eY7m8NZfIxdCciFAHezXD8-5RKEyS0I0BZO2MIVVmhwgNIqc8pmElFm2gh9zi5ifANAK6SYsW05DmGsfcc_KEbqeEzToU6HiXikl56G5FM7DvyzTa983Ke2b7-p4YH8n1P54Z37oeHT74w9D-NEMcVLdhZ8F2lx5Jxt726fy1W2ebhfl8tNVkvnUmbAWRecMRqVIvToVBWsRzIqNKQbRKwDaK1QghOF9tJCIzRV5BUWweOcXf93WyLa7ae299PX7vgC_gDXxFG1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Confocal vessel structure segmentation with optimized feature bank and random forests</title><source>IEEE Xplore All Conference Series</source><creator>Kassim, Yasmin M. ; Prasath, V.B. Surya ; Glinskii, Olga V. ; Glinsky, Vladislav V. ; Huxley, Virginia H. ; Palaniappan, Kannappan</creator><creatorcontrib>Kassim, Yasmin M. ; Prasath, V.B. Surya ; Glinskii, Olga V. ; Glinsky, Vladislav V. ; Huxley, Virginia H. ; Palaniappan, Kannappan</creatorcontrib><description>In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG), oriented second derivative, line detector and intensity masked with LoG scale map. we obtain better segmentation results in challenging imaging conditions. We obtain binary segmentations using random forest classifier trained on physiologists marked ground-truth. Experimental results on mice dura mater confocal microscopy vessel segmentations indicate that we obtain better results compared to global segmentation approaches.</description><identifier>EISSN: 2332-5615</identifier><identifier>EISBN: 9781509032846</identifier><identifier>EISBN: 1509032843</identifier><identifier>DOI: 10.1109/AIPR.2016.8010580</identifier><language>eng</language><publisher>IEEE</publisher><subject>Detectors ; Feature extraction ; Image segmentation ; Microscopy ; Physiology ; Radio frequency</subject><ispartof>2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2016, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-60989f9665344e3a394bf8a3e64fde5d333cf05543209175a280d15ebea437fa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8010580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8010580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kassim, Yasmin M.</creatorcontrib><creatorcontrib>Prasath, V.B. Surya</creatorcontrib><creatorcontrib>Glinskii, Olga V.</creatorcontrib><creatorcontrib>Glinsky, Vladislav V.</creatorcontrib><creatorcontrib>Huxley, Virginia H.</creatorcontrib><creatorcontrib>Palaniappan, Kannappan</creatorcontrib><title>Confocal vessel structure segmentation with optimized feature bank and random forests</title><title>2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)</title><addtitle>AIPR</addtitle><description>In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG), oriented second derivative, line detector and intensity masked with LoG scale map. we obtain better segmentation results in challenging imaging conditions. We obtain binary segmentations using random forest classifier trained on physiologists marked ground-truth. Experimental results on mice dura mater confocal microscopy vessel segmentations indicate that we obtain better results compared to global segmentation approaches.</description><subject>Detectors</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Microscopy</subject><subject>Physiology</subject><subject>Radio frequency</subject><issn>2332-5615</issn><isbn>9781509032846</isbn><isbn>1509032843</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEURqMgWGsfQNzkBWa8yU0yybIMagsFRey6ZGZudHR-yiRV9OkV7eY7m8NZfIxdCciFAHezXD8-5RKEyS0I0BZO2MIVVmhwgNIqc8pmElFm2gh9zi5ifANAK6SYsW05DmGsfcc_KEbqeEzToU6HiXikl56G5FM7DvyzTa983Ke2b7-p4YH8n1P54Z37oeHT74w9D-NEMcVLdhZ8F2lx5Jxt726fy1W2ebhfl8tNVkvnUmbAWRecMRqVIvToVBWsRzIqNKQbRKwDaK1QghOF9tJCIzRV5BUWweOcXf93WyLa7ae299PX7vgC_gDXxFG1</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Kassim, Yasmin M.</creator><creator>Prasath, V.B. Surya</creator><creator>Glinskii, Olga V.</creator><creator>Glinsky, Vladislav V.</creator><creator>Huxley, Virginia H.</creator><creator>Palaniappan, Kannappan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20161001</creationdate><title>Confocal vessel structure segmentation with optimized feature bank and random forests</title><author>Kassim, Yasmin M. ; Prasath, V.B. Surya ; Glinskii, Olga V. ; Glinsky, Vladislav V. ; Huxley, Virginia H. ; Palaniappan, Kannappan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-60989f9665344e3a394bf8a3e64fde5d333cf05543209175a280d15ebea437fa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Detectors</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Microscopy</topic><topic>Physiology</topic><topic>Radio frequency</topic><toplevel>online_resources</toplevel><creatorcontrib>Kassim, Yasmin M.</creatorcontrib><creatorcontrib>Prasath, V.B. Surya</creatorcontrib><creatorcontrib>Glinskii, Olga V.</creatorcontrib><creatorcontrib>Glinsky, Vladislav V.</creatorcontrib><creatorcontrib>Huxley, Virginia H.</creatorcontrib><creatorcontrib>Palaniappan, Kannappan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kassim, Yasmin M.</au><au>Prasath, V.B. Surya</au><au>Glinskii, Olga V.</au><au>Glinsky, Vladislav V.</au><au>Huxley, Virginia H.</au><au>Palaniappan, Kannappan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Confocal vessel structure segmentation with optimized feature bank and random forests</atitle><btitle>2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)</btitle><stitle>AIPR</stitle><date>2016-10-01</date><risdate>2016</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2332-5615</eissn><eisbn>9781509032846</eisbn><eisbn>1509032843</eisbn><abstract>In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG), oriented second derivative, line detector and intensity masked with LoG scale map. we obtain better segmentation results in challenging imaging conditions. We obtain binary segmentations using random forest classifier trained on physiologists marked ground-truth. Experimental results on mice dura mater confocal microscopy vessel segmentations indicate that we obtain better results compared to global segmentation approaches.</abstract><pub>IEEE</pub><doi>10.1109/AIPR.2016.8010580</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2332-5615 |
ispartof | 2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2016, p.1-6 |
issn | 2332-5615 |
language | eng |
recordid | cdi_ieee_primary_8010580 |
source | IEEE Xplore All Conference Series |
subjects | Detectors Feature extraction Image segmentation Microscopy Physiology Radio frequency |
title | Confocal vessel structure segmentation with optimized feature bank and random forests |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Confocal%20vessel%20structure%20segmentation%20with%20optimized%20feature%20bank%20and%20random%20forests&rft.btitle=2016%20IEEE%20Applied%20Imagery%20Pattern%20Recognition%20Workshop%20(AIPR)&rft.au=Kassim,%20Yasmin%20M.&rft.date=2016-10-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2332-5615&rft_id=info:doi/10.1109/AIPR.2016.8010580&rft.eisbn=9781509032846&rft.eisbn_list=1509032843&rft_dat=%3Cieee_CHZPO%3E8010580%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-60989f9665344e3a394bf8a3e64fde5d333cf05543209175a280d15ebea437fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8010580&rfr_iscdi=true |