Loading…

Confocal vessel structure segmentation with optimized feature bank and random forests

In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG)...

Full description

Saved in:
Bibliographic Details
Main Authors: Kassim, Yasmin M., Prasath, V.B. Surya, Glinskii, Olga V., Glinsky, Vladislav V., Huxley, Virginia H., Palaniappan, Kannappan
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c299t-60989f9665344e3a394bf8a3e64fde5d333cf05543209175a280d15ebea437fa3
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Kassim, Yasmin M.
Prasath, V.B. Surya
Glinskii, Olga V.
Glinsky, Vladislav V.
Huxley, Virginia H.
Palaniappan, Kannappan
description In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG), oriented second derivative, line detector and intensity masked with LoG scale map. we obtain better segmentation results in challenging imaging conditions. We obtain binary segmentations using random forest classifier trained on physiologists marked ground-truth. Experimental results on mice dura mater confocal microscopy vessel segmentations indicate that we obtain better results compared to global segmentation approaches.
doi_str_mv 10.1109/AIPR.2016.8010580
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8010580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8010580</ieee_id><sourcerecordid>8010580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-60989f9665344e3a394bf8a3e64fde5d333cf05543209175a280d15ebea437fa3</originalsourceid><addsrcrecordid>eNotkM1KAzEURqMgWGsfQNzkBWa8yU0yybIMagsFRey6ZGZudHR-yiRV9OkV7eY7m8NZfIxdCciFAHezXD8-5RKEyS0I0BZO2MIVVmhwgNIqc8pmElFm2gh9zi5ifANAK6SYsW05DmGsfcc_KEbqeEzToU6HiXikl56G5FM7DvyzTa983Ke2b7-p4YH8n1P54Z37oeHT74w9D-NEMcVLdhZ8F2lx5Jxt726fy1W2ebhfl8tNVkvnUmbAWRecMRqVIvToVBWsRzIqNKQbRKwDaK1QghOF9tJCIzRV5BUWweOcXf93WyLa7ae299PX7vgC_gDXxFG1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Confocal vessel structure segmentation with optimized feature bank and random forests</title><source>IEEE Xplore All Conference Series</source><creator>Kassim, Yasmin M. ; Prasath, V.B. Surya ; Glinskii, Olga V. ; Glinsky, Vladislav V. ; Huxley, Virginia H. ; Palaniappan, Kannappan</creator><creatorcontrib>Kassim, Yasmin M. ; Prasath, V.B. Surya ; Glinskii, Olga V. ; Glinsky, Vladislav V. ; Huxley, Virginia H. ; Palaniappan, Kannappan</creatorcontrib><description>In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG), oriented second derivative, line detector and intensity masked with LoG scale map. we obtain better segmentation results in challenging imaging conditions. We obtain binary segmentations using random forest classifier trained on physiologists marked ground-truth. Experimental results on mice dura mater confocal microscopy vessel segmentations indicate that we obtain better results compared to global segmentation approaches.</description><identifier>EISSN: 2332-5615</identifier><identifier>EISBN: 9781509032846</identifier><identifier>EISBN: 1509032843</identifier><identifier>DOI: 10.1109/AIPR.2016.8010580</identifier><language>eng</language><publisher>IEEE</publisher><subject>Detectors ; Feature extraction ; Image segmentation ; Microscopy ; Physiology ; Radio frequency</subject><ispartof>2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2016, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-60989f9665344e3a394bf8a3e64fde5d333cf05543209175a280d15ebea437fa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8010580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8010580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kassim, Yasmin M.</creatorcontrib><creatorcontrib>Prasath, V.B. Surya</creatorcontrib><creatorcontrib>Glinskii, Olga V.</creatorcontrib><creatorcontrib>Glinsky, Vladislav V.</creatorcontrib><creatorcontrib>Huxley, Virginia H.</creatorcontrib><creatorcontrib>Palaniappan, Kannappan</creatorcontrib><title>Confocal vessel structure segmentation with optimized feature bank and random forests</title><title>2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)</title><addtitle>AIPR</addtitle><description>In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG), oriented second derivative, line detector and intensity masked with LoG scale map. we obtain better segmentation results in challenging imaging conditions. We obtain binary segmentations using random forest classifier trained on physiologists marked ground-truth. Experimental results on mice dura mater confocal microscopy vessel segmentations indicate that we obtain better results compared to global segmentation approaches.</description><subject>Detectors</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Microscopy</subject><subject>Physiology</subject><subject>Radio frequency</subject><issn>2332-5615</issn><isbn>9781509032846</isbn><isbn>1509032843</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEURqMgWGsfQNzkBWa8yU0yybIMagsFRey6ZGZudHR-yiRV9OkV7eY7m8NZfIxdCciFAHezXD8-5RKEyS0I0BZO2MIVVmhwgNIqc8pmElFm2gh9zi5ifANAK6SYsW05DmGsfcc_KEbqeEzToU6HiXikl56G5FM7DvyzTa983Ke2b7-p4YH8n1P54Z37oeHT74w9D-NEMcVLdhZ8F2lx5Jxt726fy1W2ebhfl8tNVkvnUmbAWRecMRqVIvToVBWsRzIqNKQbRKwDaK1QghOF9tJCIzRV5BUWweOcXf93WyLa7ae299PX7vgC_gDXxFG1</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Kassim, Yasmin M.</creator><creator>Prasath, V.B. Surya</creator><creator>Glinskii, Olga V.</creator><creator>Glinsky, Vladislav V.</creator><creator>Huxley, Virginia H.</creator><creator>Palaniappan, Kannappan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20161001</creationdate><title>Confocal vessel structure segmentation with optimized feature bank and random forests</title><author>Kassim, Yasmin M. ; Prasath, V.B. Surya ; Glinskii, Olga V. ; Glinsky, Vladislav V. ; Huxley, Virginia H. ; Palaniappan, Kannappan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-60989f9665344e3a394bf8a3e64fde5d333cf05543209175a280d15ebea437fa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Detectors</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Microscopy</topic><topic>Physiology</topic><topic>Radio frequency</topic><toplevel>online_resources</toplevel><creatorcontrib>Kassim, Yasmin M.</creatorcontrib><creatorcontrib>Prasath, V.B. Surya</creatorcontrib><creatorcontrib>Glinskii, Olga V.</creatorcontrib><creatorcontrib>Glinsky, Vladislav V.</creatorcontrib><creatorcontrib>Huxley, Virginia H.</creatorcontrib><creatorcontrib>Palaniappan, Kannappan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kassim, Yasmin M.</au><au>Prasath, V.B. Surya</au><au>Glinskii, Olga V.</au><au>Glinsky, Vladislav V.</au><au>Huxley, Virginia H.</au><au>Palaniappan, Kannappan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Confocal vessel structure segmentation with optimized feature bank and random forests</atitle><btitle>2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)</btitle><stitle>AIPR</stitle><date>2016-10-01</date><risdate>2016</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2332-5615</eissn><eisbn>9781509032846</eisbn><eisbn>1509032843</eisbn><abstract>In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG), oriented second derivative, line detector and intensity masked with LoG scale map. we obtain better segmentation results in challenging imaging conditions. We obtain binary segmentations using random forest classifier trained on physiologists marked ground-truth. Experimental results on mice dura mater confocal microscopy vessel segmentations indicate that we obtain better results compared to global segmentation approaches.</abstract><pub>IEEE</pub><doi>10.1109/AIPR.2016.8010580</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2332-5615
ispartof 2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2016, p.1-6
issn 2332-5615
language eng
recordid cdi_ieee_primary_8010580
source IEEE Xplore All Conference Series
subjects Detectors
Feature extraction
Image segmentation
Microscopy
Physiology
Radio frequency
title Confocal vessel structure segmentation with optimized feature bank and random forests
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Confocal%20vessel%20structure%20segmentation%20with%20optimized%20feature%20bank%20and%20random%20forests&rft.btitle=2016%20IEEE%20Applied%20Imagery%20Pattern%20Recognition%20Workshop%20(AIPR)&rft.au=Kassim,%20Yasmin%20M.&rft.date=2016-10-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2332-5615&rft_id=info:doi/10.1109/AIPR.2016.8010580&rft.eisbn=9781509032846&rft.eisbn_list=1509032843&rft_dat=%3Cieee_CHZPO%3E8010580%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-60989f9665344e3a394bf8a3e64fde5d333cf05543209175a280d15ebea437fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8010580&rfr_iscdi=true