Loading…
Real-Time Driver Drowsiness Detection for Embedded System Using Model Compression of Deep Neural Networks
Driver's status is crucial because one of the main reasons for motor vehicular accidents is related to driver's inattention or drowsiness. Drowsiness detector on a car can reduce numerous accidents. Accidents occur because of a single moment of negligence, thus driver monitoring system whi...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 445 |
container_issue | |
container_start_page | 438 |
container_title | |
container_volume | |
creator | Reddy, Bhargava Ye-Hoon Kim Sojung Yun Chanwon Seo Junik Jang |
description | Driver's status is crucial because one of the main reasons for motor vehicular accidents is related to driver's inattention or drowsiness. Drowsiness detector on a car can reduce numerous accidents. Accidents occur because of a single moment of negligence, thus driver monitoring system which works in real-time is necessary. This detector should be deployable to an embedded device and perform at high accuracy. In this paper, a novel approach towards real-time drowsiness detection based on deep learning which can be implemented on a low cost embedded board and performs with a high accuracy is proposed. Main contribution of our paper is compression of heavy baseline model to a light weight model deployable to an embedded board. Moreover, minimized network structure was designed based on facial landmark input to recognize whether driver is drowsy or not. The proposed model achieved an accuracy of 89.5% on 3-class classification and speed of 14.9 frames per second (FPS) on Jetson TK1. |
doi_str_mv | 10.1109/CVPRW.2017.59 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8014793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8014793</ieee_id><sourcerecordid>8014793</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-76fbe5b34377d54d2f9bb30b7f0f66645a73c967db2690c21839bf522ff890be3</originalsourceid><addsrcrecordid>eNotjLtOwzAUQA0SEqV0ZGLxD6Rc27EdjygtD6k8VFoYqzi5RoakruxA1b8nCKaznHMIuWAwZQzMVfn6vHybcmB6Ks0ROWNSFAq0EOqYjDhTkGnJ1CmZpPQBAAwKKY0YEb_Eqs1WvkM6i_4b44CwT36LKdEZ9lj3PmypC5HOO4tNgw19OaQeO7oerHf6EBpsaRm6XRySXze4IcQdfcSvWLUD-n2In-mcnLiqTTj555isb-ar8i5bPN3el9eLzPOc9ZlWzqK0IhdaNzJvuDPWCrDagVNK5bLSojZKN5YrAzVnhTDWSc6dKwxYFGNy-ff1iLjZRd9V8bApgOXaCPEDyUlXaA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real-Time Driver Drowsiness Detection for Embedded System Using Model Compression of Deep Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>Reddy, Bhargava ; Ye-Hoon Kim ; Sojung Yun ; Chanwon Seo ; Junik Jang</creator><creatorcontrib>Reddy, Bhargava ; Ye-Hoon Kim ; Sojung Yun ; Chanwon Seo ; Junik Jang</creatorcontrib><description>Driver's status is crucial because one of the main reasons for motor vehicular accidents is related to driver's inattention or drowsiness. Drowsiness detector on a car can reduce numerous accidents. Accidents occur because of a single moment of negligence, thus driver monitoring system which works in real-time is necessary. This detector should be deployable to an embedded device and perform at high accuracy. In this paper, a novel approach towards real-time drowsiness detection based on deep learning which can be implemented on a low cost embedded board and performs with a high accuracy is proposed. Main contribution of our paper is compression of heavy baseline model to a light weight model deployable to an embedded board. Moreover, minimized network structure was designed based on facial landmark input to recognize whether driver is drowsy or not. The proposed model achieved an accuracy of 89.5% on 3-class classification and speed of 14.9 frames per second (FPS) on Jetson TK1.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1538607336</identifier><identifier>EISBN: 9781538607336</identifier><identifier>DOI: 10.1109/CVPRW.2017.59</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Computational modeling ; Deep Learning ; Driver Monitoring System ; Drowsiness Detection ; Face ; Knowledge Distillation ; Machine learning ; Model Compression ; Mouth ; Real-time Deep Neural Network ; Real-time systems ; Vehicles</subject><ispartof>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, p.438-445</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8014793$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8014793$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reddy, Bhargava</creatorcontrib><creatorcontrib>Ye-Hoon Kim</creatorcontrib><creatorcontrib>Sojung Yun</creatorcontrib><creatorcontrib>Chanwon Seo</creatorcontrib><creatorcontrib>Junik Jang</creatorcontrib><title>Real-Time Driver Drowsiness Detection for Embedded System Using Model Compression of Deep Neural Networks</title><title>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>Driver's status is crucial because one of the main reasons for motor vehicular accidents is related to driver's inattention or drowsiness. Drowsiness detector on a car can reduce numerous accidents. Accidents occur because of a single moment of negligence, thus driver monitoring system which works in real-time is necessary. This detector should be deployable to an embedded device and perform at high accuracy. In this paper, a novel approach towards real-time drowsiness detection based on deep learning which can be implemented on a low cost embedded board and performs with a high accuracy is proposed. Main contribution of our paper is compression of heavy baseline model to a light weight model deployable to an embedded board. Moreover, minimized network structure was designed based on facial landmark input to recognize whether driver is drowsy or not. The proposed model achieved an accuracy of 89.5% on 3-class classification and speed of 14.9 frames per second (FPS) on Jetson TK1.</description><subject>Brain modeling</subject><subject>Computational modeling</subject><subject>Deep Learning</subject><subject>Driver Monitoring System</subject><subject>Drowsiness Detection</subject><subject>Face</subject><subject>Knowledge Distillation</subject><subject>Machine learning</subject><subject>Model Compression</subject><subject>Mouth</subject><subject>Real-time Deep Neural Network</subject><subject>Real-time systems</subject><subject>Vehicles</subject><issn>2160-7516</issn><isbn>1538607336</isbn><isbn>9781538607336</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjLtOwzAUQA0SEqV0ZGLxD6Rc27EdjygtD6k8VFoYqzi5RoakruxA1b8nCKaznHMIuWAwZQzMVfn6vHybcmB6Ks0ROWNSFAq0EOqYjDhTkGnJ1CmZpPQBAAwKKY0YEb_Eqs1WvkM6i_4b44CwT36LKdEZ9lj3PmypC5HOO4tNgw19OaQeO7oerHf6EBpsaRm6XRySXze4IcQdfcSvWLUD-n2In-mcnLiqTTj555isb-ar8i5bPN3el9eLzPOc9ZlWzqK0IhdaNzJvuDPWCrDagVNK5bLSojZKN5YrAzVnhTDWSc6dKwxYFGNy-ff1iLjZRd9V8bApgOXaCPEDyUlXaA</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Reddy, Bhargava</creator><creator>Ye-Hoon Kim</creator><creator>Sojung Yun</creator><creator>Chanwon Seo</creator><creator>Junik Jang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201707</creationdate><title>Real-Time Driver Drowsiness Detection for Embedded System Using Model Compression of Deep Neural Networks</title><author>Reddy, Bhargava ; Ye-Hoon Kim ; Sojung Yun ; Chanwon Seo ; Junik Jang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-76fbe5b34377d54d2f9bb30b7f0f66645a73c967db2690c21839bf522ff890be3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain modeling</topic><topic>Computational modeling</topic><topic>Deep Learning</topic><topic>Driver Monitoring System</topic><topic>Drowsiness Detection</topic><topic>Face</topic><topic>Knowledge Distillation</topic><topic>Machine learning</topic><topic>Model Compression</topic><topic>Mouth</topic><topic>Real-time Deep Neural Network</topic><topic>Real-time systems</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Reddy, Bhargava</creatorcontrib><creatorcontrib>Ye-Hoon Kim</creatorcontrib><creatorcontrib>Sojung Yun</creatorcontrib><creatorcontrib>Chanwon Seo</creatorcontrib><creatorcontrib>Junik Jang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reddy, Bhargava</au><au>Ye-Hoon Kim</au><au>Sojung Yun</au><au>Chanwon Seo</au><au>Junik Jang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real-Time Driver Drowsiness Detection for Embedded System Using Model Compression of Deep Neural Networks</atitle><btitle>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2017-07</date><risdate>2017</risdate><spage>438</spage><epage>445</epage><pages>438-445</pages><eissn>2160-7516</eissn><eisbn>1538607336</eisbn><eisbn>9781538607336</eisbn><coden>IEEPAD</coden><abstract>Driver's status is crucial because one of the main reasons for motor vehicular accidents is related to driver's inattention or drowsiness. Drowsiness detector on a car can reduce numerous accidents. Accidents occur because of a single moment of negligence, thus driver monitoring system which works in real-time is necessary. This detector should be deployable to an embedded device and perform at high accuracy. In this paper, a novel approach towards real-time drowsiness detection based on deep learning which can be implemented on a low cost embedded board and performs with a high accuracy is proposed. Main contribution of our paper is compression of heavy baseline model to a light weight model deployable to an embedded board. Moreover, minimized network structure was designed based on facial landmark input to recognize whether driver is drowsy or not. The proposed model achieved an accuracy of 89.5% on 3-class classification and speed of 14.9 frames per second (FPS) on Jetson TK1.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2017.59</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, p.438-445 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_8014793 |
source | IEEE Xplore All Conference Series |
subjects | Brain modeling Computational modeling Deep Learning Driver Monitoring System Drowsiness Detection Face Knowledge Distillation Machine learning Model Compression Mouth Real-time Deep Neural Network Real-time systems Vehicles |
title | Real-Time Driver Drowsiness Detection for Embedded System Using Model Compression of Deep Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real-Time%20Driver%20Drowsiness%20Detection%20for%20Embedded%20System%20Using%20Model%20Compression%20of%20Deep%20Neural%20Networks&rft.btitle=2017%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Reddy,%20Bhargava&rft.date=2017-07&rft.spage=438&rft.epage=445&rft.pages=438-445&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW.2017.59&rft.eisbn=1538607336&rft.eisbn_list=9781538607336&rft_dat=%3Cieee_CHZPO%3E8014793%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-76fbe5b34377d54d2f9bb30b7f0f66645a73c967db2690c21839bf522ff890be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8014793&rfr_iscdi=true |