Loading…
End-to-End Driving in a Realistic Racing Game with Deep Reinforcement Learning
We address the problem of autonomous race car driving. Using a recent rally game (WRC6) with realistic physics and graphics we train an Asynchronous Actor Critic (A3C) in an end-to-end fashion and propose an improved reward function to learn faster. The network is trained simultaneously on three ver...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 475 |
container_issue | |
container_start_page | 474 |
container_title | |
container_volume | |
creator | Perot, Etienne Jaritz, Maximilian Toromanoff, Marin De Charette, Raoul |
description | We address the problem of autonomous race car driving. Using a recent rally game (WRC6) with realistic physics and graphics we train an Asynchronous Actor Critic (A3C) in an end-to-end fashion and propose an improved reward function to learn faster. The network is trained simultaneously on three very different tracks (snow, mountain, and coast) with various road structures, graphics and physics. Despite the more complex environments the trained agent learns significant features and exhibits good performance while driving in a more stable way than existing end-to-end approaches. |
doi_str_mv | 10.1109/CVPRW.2017.64 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8014798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8014798</ieee_id><sourcerecordid>8014798</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-9c4b6fe1c63bde90b0d39cd7783476b095093b7e7da38b1daa16414cab85f2893</originalsourceid><addsrcrecordid>eNotjEtLw0AURkdBsNYuXbmZP5B6b2Yyj6WktQpBJfhYlpnJjY4005IExX9vRFcHvvNxGLtAWCKCvSpfHuvXZQ6ol0oesTMshFGghVDHbJajgkwXqE7ZYhg-AADBFIUVM3a_Tk027rMJfNXHz5jeeEzc8ZrcLg5jDLx24XfduI74Vxzf-YroMPmY2n0fqKM08opcn6bXOTtp3W6gxT_n7Plm_VTeZtXD5q68rrKYoxwzG6RXLWFQwjdkwUMjbGi0NkJq5cEWYIXXpBsnjMfGOVQSZXDeFG1urJizy79uJKLtoY-d67-3BlBqa8QPHL1M7A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>End-to-End Driving in a Realistic Racing Game with Deep Reinforcement Learning</title><source>IEEE Xplore All Conference Series</source><creator>Perot, Etienne ; Jaritz, Maximilian ; Toromanoff, Marin ; De Charette, Raoul</creator><creatorcontrib>Perot, Etienne ; Jaritz, Maximilian ; Toromanoff, Marin ; De Charette, Raoul</creatorcontrib><description>We address the problem of autonomous race car driving. Using a recent rally game (WRC6) with realistic physics and graphics we train an Asynchronous Actor Critic (A3C) in an end-to-end fashion and propose an improved reward function to learn faster. The network is trained simultaneously on three very different tracks (snow, mountain, and coast) with various road structures, graphics and physics. Despite the more complex environments the trained agent learns significant features and exhibits good performance while driving in a more stable way than existing end-to-end approaches.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1538607336</identifier><identifier>EISBN: 9781538607336</identifier><identifier>DOI: 10.1109/CVPRW.2017.64</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automobiles ; Computer architecture ; Games ; Learning (artificial intelligence) ; Physics ; Roads ; Training</subject><ispartof>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, p.474-475</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8014798$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8014798$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Perot, Etienne</creatorcontrib><creatorcontrib>Jaritz, Maximilian</creatorcontrib><creatorcontrib>Toromanoff, Marin</creatorcontrib><creatorcontrib>De Charette, Raoul</creatorcontrib><title>End-to-End Driving in a Realistic Racing Game with Deep Reinforcement Learning</title><title>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>We address the problem of autonomous race car driving. Using a recent rally game (WRC6) with realistic physics and graphics we train an Asynchronous Actor Critic (A3C) in an end-to-end fashion and propose an improved reward function to learn faster. The network is trained simultaneously on three very different tracks (snow, mountain, and coast) with various road structures, graphics and physics. Despite the more complex environments the trained agent learns significant features and exhibits good performance while driving in a more stable way than existing end-to-end approaches.</description><subject>Automobiles</subject><subject>Computer architecture</subject><subject>Games</subject><subject>Learning (artificial intelligence)</subject><subject>Physics</subject><subject>Roads</subject><subject>Training</subject><issn>2160-7516</issn><isbn>1538607336</isbn><isbn>9781538607336</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEtLw0AURkdBsNYuXbmZP5B6b2Yyj6WktQpBJfhYlpnJjY4005IExX9vRFcHvvNxGLtAWCKCvSpfHuvXZQ6ol0oesTMshFGghVDHbJajgkwXqE7ZYhg-AADBFIUVM3a_Tk027rMJfNXHz5jeeEzc8ZrcLg5jDLx24XfduI74Vxzf-YroMPmY2n0fqKM08opcn6bXOTtp3W6gxT_n7Plm_VTeZtXD5q68rrKYoxwzG6RXLWFQwjdkwUMjbGi0NkJq5cEWYIXXpBsnjMfGOVQSZXDeFG1urJizy79uJKLtoY-d67-3BlBqa8QPHL1M7A</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Perot, Etienne</creator><creator>Jaritz, Maximilian</creator><creator>Toromanoff, Marin</creator><creator>De Charette, Raoul</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201707</creationdate><title>End-to-End Driving in a Realistic Racing Game with Deep Reinforcement Learning</title><author>Perot, Etienne ; Jaritz, Maximilian ; Toromanoff, Marin ; De Charette, Raoul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-9c4b6fe1c63bde90b0d39cd7783476b095093b7e7da38b1daa16414cab85f2893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automobiles</topic><topic>Computer architecture</topic><topic>Games</topic><topic>Learning (artificial intelligence)</topic><topic>Physics</topic><topic>Roads</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Perot, Etienne</creatorcontrib><creatorcontrib>Jaritz, Maximilian</creatorcontrib><creatorcontrib>Toromanoff, Marin</creatorcontrib><creatorcontrib>De Charette, Raoul</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perot, Etienne</au><au>Jaritz, Maximilian</au><au>Toromanoff, Marin</au><au>De Charette, Raoul</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>End-to-End Driving in a Realistic Racing Game with Deep Reinforcement Learning</atitle><btitle>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2017-07</date><risdate>2017</risdate><spage>474</spage><epage>475</epage><pages>474-475</pages><eissn>2160-7516</eissn><eisbn>1538607336</eisbn><eisbn>9781538607336</eisbn><coden>IEEPAD</coden><abstract>We address the problem of autonomous race car driving. Using a recent rally game (WRC6) with realistic physics and graphics we train an Asynchronous Actor Critic (A3C) in an end-to-end fashion and propose an improved reward function to learn faster. The network is trained simultaneously on three very different tracks (snow, mountain, and coast) with various road structures, graphics and physics. Despite the more complex environments the trained agent learns significant features and exhibits good performance while driving in a more stable way than existing end-to-end approaches.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2017.64</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, p.474-475 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_8014798 |
source | IEEE Xplore All Conference Series |
subjects | Automobiles Computer architecture Games Learning (artificial intelligence) Physics Roads Training |
title | End-to-End Driving in a Realistic Racing Game with Deep Reinforcement Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=End-to-End%20Driving%20in%20a%20Realistic%20Racing%20Game%20with%20Deep%20Reinforcement%20Learning&rft.btitle=2017%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Perot,%20Etienne&rft.date=2017-07&rft.spage=474&rft.epage=475&rft.pages=474-475&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW.2017.64&rft.eisbn=1538607336&rft.eisbn_list=9781538607336&rft_dat=%3Cieee_CHZPO%3E8014798%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i214t-9c4b6fe1c63bde90b0d39cd7783476b095093b7e7da38b1daa16414cab85f2893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8014798&rfr_iscdi=true |