Loading…

Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection

This paper proposes a novel method to estimate the global scale of a 3D reconstructed model within a Kalman filtering-based monocular SLAM algorithm. Our Bayesian framework integrates height priors over the detected objects belonging to a set of broad predefined classes, based on recent advances in...

Full description

Saved in:
Bibliographic Details
Main Authors: Sucar, Edgar, Hayet, Jean-Bernard
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 996
container_issue
container_start_page 988
container_title
container_volume
creator Sucar, Edgar
Hayet, Jean-Bernard
description This paper proposes a novel method to estimate the global scale of a 3D reconstructed model within a Kalman filtering-based monocular SLAM algorithm. Our Bayesian framework integrates height priors over the detected objects belonging to a set of broad predefined classes, based on recent advances in fast generic object detection. Each observation is produced on single frames, so that we do not need a data association process along video frames. This is because we associate the height priors with the image region sizes at image places where map features projections fall within the object detection regions. We present very promising results of this approach obtained on several experiments with different object classes.
doi_str_mv 10.1109/CVPRW.2017.135
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8014869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8014869</ieee_id><sourcerecordid>8014869</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a31acd64c3af4e70720c4a83982a8e8eed2d1c0e7d3f98180da77b536eee8f83</originalsourceid><addsrcrecordid>eNotjk9Lw0AUxFdBsNZevXjZL5D6Xjb7J8ca2yiktNigx7LZfYEtMZEkF7-9C3oa5sfMMIw9IKwRIX8qPo7vn-sUUK9RyCt2h1IYBVoIdc0WKSpItER1y1bTdAEABCNlLhasPo5DY5vQhWkOjpdddB0_OdsR30b0Zecw9LwdRr4f-uFUbfb82U7keaQl9TTG1qG5kJv5C81RYvye3bS2m2j1r0tW77Z18ZpUh_Kt2FRJQC3nxAq0zqvMCdtmpEGn4DJrRG5Sa8gQ-dSjA9JetLlBA95q3UihiMi0RizZ499siOD8Pcaz48_ZAGZG5eIXlvxPzw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection</title><source>IEEE Xplore All Conference Series</source><creator>Sucar, Edgar ; Hayet, Jean-Bernard</creator><creatorcontrib>Sucar, Edgar ; Hayet, Jean-Bernard</creatorcontrib><description>This paper proposes a novel method to estimate the global scale of a 3D reconstructed model within a Kalman filtering-based monocular SLAM algorithm. Our Bayesian framework integrates height priors over the detected objects belonging to a set of broad predefined classes, based on recent advances in fast generic object detection. Each observation is produced on single frames, so that we do not need a data association process along video frames. This is because we associate the height priors with the image region sizes at image places where map features projections fall within the object detection regions. We present very promising results of this approach obtained on several experiments with different object classes.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1538607336</identifier><identifier>EISBN: 9781538607336</identifier><identifier>DOI: 10.1109/CVPRW.2017.135</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayes methods ; Cameras ; Detectors ; Estimation ; Object detection ; Simultaneous localization and mapping ; Three-dimensional displays</subject><ispartof>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, p.988-996</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8014869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8014869$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sucar, Edgar</creatorcontrib><creatorcontrib>Hayet, Jean-Bernard</creatorcontrib><title>Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection</title><title>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>This paper proposes a novel method to estimate the global scale of a 3D reconstructed model within a Kalman filtering-based monocular SLAM algorithm. Our Bayesian framework integrates height priors over the detected objects belonging to a set of broad predefined classes, based on recent advances in fast generic object detection. Each observation is produced on single frames, so that we do not need a data association process along video frames. This is because we associate the height priors with the image region sizes at image places where map features projections fall within the object detection regions. We present very promising results of this approach obtained on several experiments with different object classes.</description><subject>Bayes methods</subject><subject>Cameras</subject><subject>Detectors</subject><subject>Estimation</subject><subject>Object detection</subject><subject>Simultaneous localization and mapping</subject><subject>Three-dimensional displays</subject><issn>2160-7516</issn><isbn>1538607336</isbn><isbn>9781538607336</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjk9Lw0AUxFdBsNZevXjZL5D6Xjb7J8ca2yiktNigx7LZfYEtMZEkF7-9C3oa5sfMMIw9IKwRIX8qPo7vn-sUUK9RyCt2h1IYBVoIdc0WKSpItER1y1bTdAEABCNlLhasPo5DY5vQhWkOjpdddB0_OdsR30b0Zecw9LwdRr4f-uFUbfb82U7keaQl9TTG1qG5kJv5C81RYvye3bS2m2j1r0tW77Z18ZpUh_Kt2FRJQC3nxAq0zqvMCdtmpEGn4DJrRG5Sa8gQ-dSjA9JetLlBA95q3UihiMi0RizZ499siOD8Pcaz48_ZAGZG5eIXlvxPzw</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Sucar, Edgar</creator><creator>Hayet, Jean-Bernard</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201707</creationdate><title>Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection</title><author>Sucar, Edgar ; Hayet, Jean-Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a31acd64c3af4e70720c4a83982a8e8eed2d1c0e7d3f98180da77b536eee8f83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayes methods</topic><topic>Cameras</topic><topic>Detectors</topic><topic>Estimation</topic><topic>Object detection</topic><topic>Simultaneous localization and mapping</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Sucar, Edgar</creatorcontrib><creatorcontrib>Hayet, Jean-Bernard</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sucar, Edgar</au><au>Hayet, Jean-Bernard</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection</atitle><btitle>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2017-07</date><risdate>2017</risdate><spage>988</spage><epage>996</epage><pages>988-996</pages><eissn>2160-7516</eissn><eisbn>1538607336</eisbn><eisbn>9781538607336</eisbn><coden>IEEPAD</coden><abstract>This paper proposes a novel method to estimate the global scale of a 3D reconstructed model within a Kalman filtering-based monocular SLAM algorithm. Our Bayesian framework integrates height priors over the detected objects belonging to a set of broad predefined classes, based on recent advances in fast generic object detection. Each observation is produced on single frames, so that we do not need a data association process along video frames. This is because we associate the height priors with the image region sizes at image places where map features projections fall within the object detection regions. We present very promising results of this approach obtained on several experiments with different object classes.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2017.135</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2160-7516
ispartof 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, p.988-996
issn 2160-7516
language eng
recordid cdi_ieee_primary_8014869
source IEEE Xplore All Conference Series
subjects Bayes methods
Cameras
Detectors
Estimation
Object detection
Simultaneous localization and mapping
Three-dimensional displays
title Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20Global%20Scale%20Estimation%20for%20MonoSLAM%20Based%20on%20Generic%20Object%20Detection&rft.btitle=2017%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Sucar,%20Edgar&rft.date=2017-07&rft.spage=988&rft.epage=996&rft.pages=988-996&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW.2017.135&rft.eisbn=1538607336&rft.eisbn_list=9781538607336&rft_dat=%3Cieee_CHZPO%3E8014869%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a31acd64c3af4e70720c4a83982a8e8eed2d1c0e7d3f98180da77b536eee8f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8014869&rfr_iscdi=true