Loading…
Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection
This paper proposes a novel method to estimate the global scale of a 3D reconstructed model within a Kalman filtering-based monocular SLAM algorithm. Our Bayesian framework integrates height priors over the detected objects belonging to a set of broad predefined classes, based on recent advances in...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 996 |
container_issue | |
container_start_page | 988 |
container_title | |
container_volume | |
creator | Sucar, Edgar Hayet, Jean-Bernard |
description | This paper proposes a novel method to estimate the global scale of a 3D reconstructed model within a Kalman filtering-based monocular SLAM algorithm. Our Bayesian framework integrates height priors over the detected objects belonging to a set of broad predefined classes, based on recent advances in fast generic object detection. Each observation is produced on single frames, so that we do not need a data association process along video frames. This is because we associate the height priors with the image region sizes at image places where map features projections fall within the object detection regions. We present very promising results of this approach obtained on several experiments with different object classes. |
doi_str_mv | 10.1109/CVPRW.2017.135 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8014869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8014869</ieee_id><sourcerecordid>8014869</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a31acd64c3af4e70720c4a83982a8e8eed2d1c0e7d3f98180da77b536eee8f83</originalsourceid><addsrcrecordid>eNotjk9Lw0AUxFdBsNZevXjZL5D6Xjb7J8ca2yiktNigx7LZfYEtMZEkF7-9C3oa5sfMMIw9IKwRIX8qPo7vn-sUUK9RyCt2h1IYBVoIdc0WKSpItER1y1bTdAEABCNlLhasPo5DY5vQhWkOjpdddB0_OdsR30b0Zecw9LwdRr4f-uFUbfb82U7keaQl9TTG1qG5kJv5C81RYvye3bS2m2j1r0tW77Z18ZpUh_Kt2FRJQC3nxAq0zqvMCdtmpEGn4DJrRG5Sa8gQ-dSjA9JetLlBA95q3UihiMi0RizZ499siOD8Pcaz48_ZAGZG5eIXlvxPzw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection</title><source>IEEE Xplore All Conference Series</source><creator>Sucar, Edgar ; Hayet, Jean-Bernard</creator><creatorcontrib>Sucar, Edgar ; Hayet, Jean-Bernard</creatorcontrib><description>This paper proposes a novel method to estimate the global scale of a 3D reconstructed model within a Kalman filtering-based monocular SLAM algorithm. Our Bayesian framework integrates height priors over the detected objects belonging to a set of broad predefined classes, based on recent advances in fast generic object detection. Each observation is produced on single frames, so that we do not need a data association process along video frames. This is because we associate the height priors with the image region sizes at image places where map features projections fall within the object detection regions. We present very promising results of this approach obtained on several experiments with different object classes.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1538607336</identifier><identifier>EISBN: 9781538607336</identifier><identifier>DOI: 10.1109/CVPRW.2017.135</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayes methods ; Cameras ; Detectors ; Estimation ; Object detection ; Simultaneous localization and mapping ; Three-dimensional displays</subject><ispartof>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, p.988-996</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8014869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8014869$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sucar, Edgar</creatorcontrib><creatorcontrib>Hayet, Jean-Bernard</creatorcontrib><title>Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection</title><title>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>This paper proposes a novel method to estimate the global scale of a 3D reconstructed model within a Kalman filtering-based monocular SLAM algorithm. Our Bayesian framework integrates height priors over the detected objects belonging to a set of broad predefined classes, based on recent advances in fast generic object detection. Each observation is produced on single frames, so that we do not need a data association process along video frames. This is because we associate the height priors with the image region sizes at image places where map features projections fall within the object detection regions. We present very promising results of this approach obtained on several experiments with different object classes.</description><subject>Bayes methods</subject><subject>Cameras</subject><subject>Detectors</subject><subject>Estimation</subject><subject>Object detection</subject><subject>Simultaneous localization and mapping</subject><subject>Three-dimensional displays</subject><issn>2160-7516</issn><isbn>1538607336</isbn><isbn>9781538607336</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjk9Lw0AUxFdBsNZevXjZL5D6Xjb7J8ca2yiktNigx7LZfYEtMZEkF7-9C3oa5sfMMIw9IKwRIX8qPo7vn-sUUK9RyCt2h1IYBVoIdc0WKSpItER1y1bTdAEABCNlLhasPo5DY5vQhWkOjpdddB0_OdsR30b0Zecw9LwdRr4f-uFUbfb82U7keaQl9TTG1qG5kJv5C81RYvye3bS2m2j1r0tW77Z18ZpUh_Kt2FRJQC3nxAq0zqvMCdtmpEGn4DJrRG5Sa8gQ-dSjA9JetLlBA95q3UihiMi0RizZ499siOD8Pcaz48_ZAGZG5eIXlvxPzw</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Sucar, Edgar</creator><creator>Hayet, Jean-Bernard</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201707</creationdate><title>Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection</title><author>Sucar, Edgar ; Hayet, Jean-Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a31acd64c3af4e70720c4a83982a8e8eed2d1c0e7d3f98180da77b536eee8f83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayes methods</topic><topic>Cameras</topic><topic>Detectors</topic><topic>Estimation</topic><topic>Object detection</topic><topic>Simultaneous localization and mapping</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Sucar, Edgar</creatorcontrib><creatorcontrib>Hayet, Jean-Bernard</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sucar, Edgar</au><au>Hayet, Jean-Bernard</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection</atitle><btitle>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2017-07</date><risdate>2017</risdate><spage>988</spage><epage>996</epage><pages>988-996</pages><eissn>2160-7516</eissn><eisbn>1538607336</eisbn><eisbn>9781538607336</eisbn><coden>IEEPAD</coden><abstract>This paper proposes a novel method to estimate the global scale of a 3D reconstructed model within a Kalman filtering-based monocular SLAM algorithm. Our Bayesian framework integrates height priors over the detected objects belonging to a set of broad predefined classes, based on recent advances in fast generic object detection. Each observation is produced on single frames, so that we do not need a data association process along video frames. This is because we associate the height priors with the image region sizes at image places where map features projections fall within the object detection regions. We present very promising results of this approach obtained on several experiments with different object classes.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2017.135</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, p.988-996 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_8014869 |
source | IEEE Xplore All Conference Series |
subjects | Bayes methods Cameras Detectors Estimation Object detection Simultaneous localization and mapping Three-dimensional displays |
title | Probabilistic Global Scale Estimation for MonoSLAM Based on Generic Object Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20Global%20Scale%20Estimation%20for%20MonoSLAM%20Based%20on%20Generic%20Object%20Detection&rft.btitle=2017%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Sucar,%20Edgar&rft.date=2017-07&rft.spage=988&rft.epage=996&rft.pages=988-996&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW.2017.135&rft.eisbn=1538607336&rft.eisbn_list=9781538607336&rft_dat=%3Cieee_CHZPO%3E8014869%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a31acd64c3af4e70720c4a83982a8e8eed2d1c0e7d3f98180da77b536eee8f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8014869&rfr_iscdi=true |