Loading…

Linearizing the Plenoptic Space

The plenoptic function, also known as the light field or the lumigraph, contains the information about the radiance of all optical rays that go through all points in space in a scene. Since no camera can capture all this information, one of the main challenges in plenoptic imaging is light field rec...

Full description

Saved in:
Bibliographic Details
Main Authors: Nieto, Gregoire, Devernay, Frederic, Crowley, James
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1725
container_issue
container_start_page 1714
container_title
container_volume
creator Nieto, Gregoire
Devernay, Frederic
Crowley, James
description The plenoptic function, also known as the light field or the lumigraph, contains the information about the radiance of all optical rays that go through all points in space in a scene. Since no camera can capture all this information, one of the main challenges in plenoptic imaging is light field reconstruction, which consists in interpolating the ray samples captured by the cameras to create a dense light field. Most existing methods perform this task by first attempting some kind of 3D reconstruction of the visible scene. Our method, in contrast, works by modeling the scene as a set of visual points, which describe how each point moves in the image when a camera moves. We compute visual point models of various degrees of complexity, and show that high-dimensional models are able to replicate complex optical effects such as reflection or refraction, and a model selection method can differentiate quasi-Lambertian from non-Lambertian areas in the scene.
doi_str_mv 10.1109/CVPRW.2017.218
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8014952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8014952</ieee_id><sourcerecordid>8014952</sourcerecordid><originalsourceid>FETCH-LOGICAL-h249t-b10d4c2f856103124954b94aca1d12aa7544bb8eebfaf886acc7f46a355febc23</originalsourceid><addsrcrecordid>eNotzMtKw0AUgOFREKy1WzcuzAsknjP3LEvwBgGL12U5Mz1jR2oMSTb69C3o6od_8QlxgVAhQn3dvK2e3isJ6CqJ_kicoVHeglPKHouZRAulM2hPxWIcPwEAwRtTq5m4anPHNOTf3H0U05aL1Y67737KsXjuKfK5OEm0G3nx37l4vb15ae7L9vHuoVm25VbqeioDwkZHmbyxCAoPz-hQa4qEG5REzmgdgmcOiZL3lmJ0SVtSxiQOUaq5uPxzMzOv-yF_0fCz9oAHSao9-YI9Og</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Linearizing the Plenoptic Space</title><source>IEEE Xplore All Conference Series</source><creator>Nieto, Gregoire ; Devernay, Frederic ; Crowley, James</creator><creatorcontrib>Nieto, Gregoire ; Devernay, Frederic ; Crowley, James</creatorcontrib><description>The plenoptic function, also known as the light field or the lumigraph, contains the information about the radiance of all optical rays that go through all points in space in a scene. Since no camera can capture all this information, one of the main challenges in plenoptic imaging is light field reconstruction, which consists in interpolating the ray samples captured by the cameras to create a dense light field. Most existing methods perform this task by first attempting some kind of 3D reconstruction of the visible scene. Our method, in contrast, works by modeling the scene as a set of visual points, which describe how each point moves in the image when a camera moves. We compute visual point models of various degrees of complexity, and show that high-dimensional models are able to replicate complex optical effects such as reflection or refraction, and a model selection method can differentiate quasi-Lambertian from non-Lambertian areas in the scene.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1538607336</identifier><identifier>EISBN: 9781538607336</identifier><identifier>DOI: 10.1109/CVPRW.2017.218</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Image reconstruction ; Optical imaging ; Optical refraction ; Optical variables control ; Three-dimensional displays ; Visualization</subject><ispartof>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, p.1714-1725</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8014952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,23913,23914,25123,27908,54538,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8014952$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nieto, Gregoire</creatorcontrib><creatorcontrib>Devernay, Frederic</creatorcontrib><creatorcontrib>Crowley, James</creatorcontrib><title>Linearizing the Plenoptic Space</title><title>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>The plenoptic function, also known as the light field or the lumigraph, contains the information about the radiance of all optical rays that go through all points in space in a scene. Since no camera can capture all this information, one of the main challenges in plenoptic imaging is light field reconstruction, which consists in interpolating the ray samples captured by the cameras to create a dense light field. Most existing methods perform this task by first attempting some kind of 3D reconstruction of the visible scene. Our method, in contrast, works by modeling the scene as a set of visual points, which describe how each point moves in the image when a camera moves. We compute visual point models of various degrees of complexity, and show that high-dimensional models are able to replicate complex optical effects such as reflection or refraction, and a model selection method can differentiate quasi-Lambertian from non-Lambertian areas in the scene.</description><subject>Cameras</subject><subject>Image reconstruction</subject><subject>Optical imaging</subject><subject>Optical refraction</subject><subject>Optical variables control</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>2160-7516</issn><isbn>1538607336</isbn><isbn>9781538607336</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzMtKw0AUgOFREKy1WzcuzAsknjP3LEvwBgGL12U5Mz1jR2oMSTb69C3o6od_8QlxgVAhQn3dvK2e3isJ6CqJ_kicoVHeglPKHouZRAulM2hPxWIcPwEAwRtTq5m4anPHNOTf3H0U05aL1Y67737KsXjuKfK5OEm0G3nx37l4vb15ae7L9vHuoVm25VbqeioDwkZHmbyxCAoPz-hQa4qEG5REzmgdgmcOiZL3lmJ0SVtSxiQOUaq5uPxzMzOv-yF_0fCz9oAHSao9-YI9Og</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Nieto, Gregoire</creator><creator>Devernay, Frederic</creator><creator>Crowley, James</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201707</creationdate><title>Linearizing the Plenoptic Space</title><author>Nieto, Gregoire ; Devernay, Frederic ; Crowley, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h249t-b10d4c2f856103124954b94aca1d12aa7544bb8eebfaf886acc7f46a355febc23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cameras</topic><topic>Image reconstruction</topic><topic>Optical imaging</topic><topic>Optical refraction</topic><topic>Optical variables control</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Nieto, Gregoire</creatorcontrib><creatorcontrib>Devernay, Frederic</creatorcontrib><creatorcontrib>Crowley, James</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nieto, Gregoire</au><au>Devernay, Frederic</au><au>Crowley, James</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Linearizing the Plenoptic Space</atitle><btitle>2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2017-07</date><risdate>2017</risdate><spage>1714</spage><epage>1725</epage><pages>1714-1725</pages><eissn>2160-7516</eissn><eisbn>1538607336</eisbn><eisbn>9781538607336</eisbn><coden>IEEPAD</coden><abstract>The plenoptic function, also known as the light field or the lumigraph, contains the information about the radiance of all optical rays that go through all points in space in a scene. Since no camera can capture all this information, one of the main challenges in plenoptic imaging is light field reconstruction, which consists in interpolating the ray samples captured by the cameras to create a dense light field. Most existing methods perform this task by first attempting some kind of 3D reconstruction of the visible scene. Our method, in contrast, works by modeling the scene as a set of visual points, which describe how each point moves in the image when a camera moves. We compute visual point models of various degrees of complexity, and show that high-dimensional models are able to replicate complex optical effects such as reflection or refraction, and a model selection method can differentiate quasi-Lambertian from non-Lambertian areas in the scene.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2017.218</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2160-7516
ispartof 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, p.1714-1725
issn 2160-7516
language eng
recordid cdi_ieee_primary_8014952
source IEEE Xplore All Conference Series
subjects Cameras
Image reconstruction
Optical imaging
Optical refraction
Optical variables control
Three-dimensional displays
Visualization
title Linearizing the Plenoptic Space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Linearizing%20the%20Plenoptic%20Space&rft.btitle=2017%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Nieto,%20Gregoire&rft.date=2017-07&rft.spage=1714&rft.epage=1725&rft.pages=1714-1725&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW.2017.218&rft.eisbn=1538607336&rft.eisbn_list=9781538607336&rft_dat=%3Cieee_CHZPO%3E8014952%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h249t-b10d4c2f856103124954b94aca1d12aa7544bb8eebfaf886acc7f46a355febc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8014952&rfr_iscdi=true