Loading…
Finite-time stability of stochastic nonlinear systems with Markovian switching
This paper presents a new Lyapunov theorem on almost surely finite-time stability for stochastic nonlinear systems with Markovian switching. Unlike the work in [3] that consider finite-time stability and stabilisation of conventional stochastic differential equation (SDE) systems, this paper aims to...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1924 |
container_issue | |
container_start_page | 1919 |
container_title | |
container_volume | |
creator | Juliang Yin Xin Yu Suiyang Khoo |
description | This paper presents a new Lyapunov theorem on almost surely finite-time stability for stochastic nonlinear systems with Markovian switching. Unlike the work in [3] that consider finite-time stability and stabilisation of conventional stochastic differential equation (SDE) systems, this paper aims to propose a weaker finite-time stability theory for a more general class of SDE systems with Markovian switching. A lemma is presented to discuss conditions that ensure the existence of a unique strong solution for such SDE systems with Markovian switching. Extended Comparison Principle and Bihari's inequality are derived, which relaxes some previous conditions and play an important role in the proof of the new Lyapunov theorem. Weaker conditions are proposed to ensure finite-time stability in probability one with supportive examples. Two simulation examples are given to illustrate the theoretical analysis. |
doi_str_mv | 10.23919/ChiCC.2017.8027634 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8027634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8027634</ieee_id><sourcerecordid>8027634</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bace7c232e722f8c1bf4c1c4fcc3a5364b0e2165df446959eaccfb92ba446d503</originalsourceid><addsrcrecordid>eNotz0tOwzAYBGCDhERbOEE3vkCC346XKKKAVGAD68p2bfJD4qDYAuX2RGpXo28zmkFoS0nNuKHmru2gbWtGqK4bwrTi4gKtTdNQqbjh_BKtGFW0Yobpa7TO-YsQRQzlK_S6gwQlVAWGgHOxDnooMx7jgtF3NhfwOI2phxTshPOcSxgy_oPS4Rc7fY-_YBPOi30H6fMGXUXb53B7zg362D28t0_V_u3xub3fV0C1LJWzPmjPOAuasdh46qLw1IvoPbeSK-FIWBbLYxRCGWmC9T46w5xdfJSEb9D21AshhMPPBIOd5sP5O_8HvoxQng</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Finite-time stability of stochastic nonlinear systems with Markovian switching</title><source>IEEE Xplore All Conference Series</source><creator>Juliang Yin ; Xin Yu ; Suiyang Khoo</creator><creatorcontrib>Juliang Yin ; Xin Yu ; Suiyang Khoo</creatorcontrib><description>This paper presents a new Lyapunov theorem on almost surely finite-time stability for stochastic nonlinear systems with Markovian switching. Unlike the work in [3] that consider finite-time stability and stabilisation of conventional stochastic differential equation (SDE) systems, this paper aims to propose a weaker finite-time stability theory for a more general class of SDE systems with Markovian switching. A lemma is presented to discuss conditions that ensure the existence of a unique strong solution for such SDE systems with Markovian switching. Extended Comparison Principle and Bihari's inequality are derived, which relaxes some previous conditions and play an important role in the proof of the new Lyapunov theorem. Weaker conditions are proposed to ensure finite-time stability in probability one with supportive examples. Two simulation examples are given to illustrate the theoretical analysis.</description><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9881563933</identifier><identifier>EISBN: 9789881563934</identifier><identifier>DOI: 10.23919/ChiCC.2017.8027634</identifier><language>eng</language><publisher>Technical Committee on Control Theory, CAA</publisher><subject>Differential equations ; Finite-time stability ; Lyapunov stability ; Markov processes ; Markovian switching ; Mathematical model ; Nonlinear systems ; Stability analysis ; Stochastic nonlinear systems ; Switches</subject><ispartof>2017 36th Chinese Control Conference (CCC), 2017, p.1919-1924</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8027634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8027634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Juliang Yin</creatorcontrib><creatorcontrib>Xin Yu</creatorcontrib><creatorcontrib>Suiyang Khoo</creatorcontrib><title>Finite-time stability of stochastic nonlinear systems with Markovian switching</title><title>2017 36th Chinese Control Conference (CCC)</title><addtitle>ChiCC</addtitle><description>This paper presents a new Lyapunov theorem on almost surely finite-time stability for stochastic nonlinear systems with Markovian switching. Unlike the work in [3] that consider finite-time stability and stabilisation of conventional stochastic differential equation (SDE) systems, this paper aims to propose a weaker finite-time stability theory for a more general class of SDE systems with Markovian switching. A lemma is presented to discuss conditions that ensure the existence of a unique strong solution for such SDE systems with Markovian switching. Extended Comparison Principle and Bihari's inequality are derived, which relaxes some previous conditions and play an important role in the proof of the new Lyapunov theorem. Weaker conditions are proposed to ensure finite-time stability in probability one with supportive examples. Two simulation examples are given to illustrate the theoretical analysis.</description><subject>Differential equations</subject><subject>Finite-time stability</subject><subject>Lyapunov stability</subject><subject>Markov processes</subject><subject>Markovian switching</subject><subject>Mathematical model</subject><subject>Nonlinear systems</subject><subject>Stability analysis</subject><subject>Stochastic nonlinear systems</subject><subject>Switches</subject><issn>2161-2927</issn><isbn>9881563933</isbn><isbn>9789881563934</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz0tOwzAYBGCDhERbOEE3vkCC346XKKKAVGAD68p2bfJD4qDYAuX2RGpXo28zmkFoS0nNuKHmru2gbWtGqK4bwrTi4gKtTdNQqbjh_BKtGFW0Yobpa7TO-YsQRQzlK_S6gwQlVAWGgHOxDnooMx7jgtF3NhfwOI2phxTshPOcSxgy_oPS4Rc7fY-_YBPOi30H6fMGXUXb53B7zg362D28t0_V_u3xub3fV0C1LJWzPmjPOAuasdh46qLw1IvoPbeSK-FIWBbLYxRCGWmC9T46w5xdfJSEb9D21AshhMPPBIOd5sP5O_8HvoxQng</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Juliang Yin</creator><creator>Xin Yu</creator><creator>Suiyang Khoo</creator><general>Technical Committee on Control Theory, CAA</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201707</creationdate><title>Finite-time stability of stochastic nonlinear systems with Markovian switching</title><author>Juliang Yin ; Xin Yu ; Suiyang Khoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bace7c232e722f8c1bf4c1c4fcc3a5364b0e2165df446959eaccfb92ba446d503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Differential equations</topic><topic>Finite-time stability</topic><topic>Lyapunov stability</topic><topic>Markov processes</topic><topic>Markovian switching</topic><topic>Mathematical model</topic><topic>Nonlinear systems</topic><topic>Stability analysis</topic><topic>Stochastic nonlinear systems</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Juliang Yin</creatorcontrib><creatorcontrib>Xin Yu</creatorcontrib><creatorcontrib>Suiyang Khoo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Juliang Yin</au><au>Xin Yu</au><au>Suiyang Khoo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Finite-time stability of stochastic nonlinear systems with Markovian switching</atitle><btitle>2017 36th Chinese Control Conference (CCC)</btitle><stitle>ChiCC</stitle><date>2017-07</date><risdate>2017</risdate><spage>1919</spage><epage>1924</epage><pages>1919-1924</pages><eissn>2161-2927</eissn><eisbn>9881563933</eisbn><eisbn>9789881563934</eisbn><abstract>This paper presents a new Lyapunov theorem on almost surely finite-time stability for stochastic nonlinear systems with Markovian switching. Unlike the work in [3] that consider finite-time stability and stabilisation of conventional stochastic differential equation (SDE) systems, this paper aims to propose a weaker finite-time stability theory for a more general class of SDE systems with Markovian switching. A lemma is presented to discuss conditions that ensure the existence of a unique strong solution for such SDE systems with Markovian switching. Extended Comparison Principle and Bihari's inequality are derived, which relaxes some previous conditions and play an important role in the proof of the new Lyapunov theorem. Weaker conditions are proposed to ensure finite-time stability in probability one with supportive examples. Two simulation examples are given to illustrate the theoretical analysis.</abstract><pub>Technical Committee on Control Theory, CAA</pub><doi>10.23919/ChiCC.2017.8027634</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-2927 |
ispartof | 2017 36th Chinese Control Conference (CCC), 2017, p.1919-1924 |
issn | 2161-2927 |
language | eng |
recordid | cdi_ieee_primary_8027634 |
source | IEEE Xplore All Conference Series |
subjects | Differential equations Finite-time stability Lyapunov stability Markov processes Markovian switching Mathematical model Nonlinear systems Stability analysis Stochastic nonlinear systems Switches |
title | Finite-time stability of stochastic nonlinear systems with Markovian switching |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Finite-time%20stability%20of%20stochastic%20nonlinear%20systems%20with%20Markovian%20switching&rft.btitle=2017%2036th%20Chinese%20Control%20Conference%20(CCC)&rft.au=Juliang%20Yin&rft.date=2017-07&rft.spage=1919&rft.epage=1924&rft.pages=1919-1924&rft.eissn=2161-2927&rft_id=info:doi/10.23919/ChiCC.2017.8027634&rft.eisbn=9881563933&rft.eisbn_list=9789881563934&rft_dat=%3Cieee_CHZPO%3E8027634%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-bace7c232e722f8c1bf4c1c4fcc3a5364b0e2165df446959eaccfb92ba446d503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8027634&rfr_iscdi=true |