Loading…

A deep learning-based operation optimization strategy for BFG/coal co-firing boiler

How to operate a BFG/coal co-firing boiler in high efficiency is challenging for a gas/solid multi-fuel combustion system. Taking operation data from a real boiler, this study proposes an operation optimization strategy of BFG/coal co-firing boiler based on deep learning. Firstly, the thermal effici...

Full description

Saved in:
Bibliographic Details
Main Authors: Jian-Guo Wang, Jin-Qiu Min, Li-Lan Liu, Bang-Hua Yang, Shi-Wei Ma, Min-Rui Fei, Yi-Min Guo, Yuan Yao, Yi-Ping Wu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9724
container_issue
container_start_page 9720
container_title
container_volume
creator Jian-Guo Wang
Jin-Qiu Min
Li-Lan Liu
Bang-Hua Yang
Shi-Wei Ma
Min-Rui Fei
Yi-Min Guo
Yuan Yao
Yi-Ping Wu
description How to operate a BFG/coal co-firing boiler in high efficiency is challenging for a gas/solid multi-fuel combustion system. Taking operation data from a real boiler, this study proposes an operation optimization strategy of BFG/coal co-firing boiler based on deep learning. Firstly, the thermal efficiency model is constructed based on deep learning with all the actual sampling data, which outperform the other modeling methods. Then, the high efficiency data being selected as labeled data, a deep learning-based model of air flow is constructed. It needs to be emphasized that, to take full advantage of all available information and improve the model accuracy, all the labeled and unlabeled data are utilized in auto-coder learning of the air flow modeling. Finally, the constructed air flow model is used for the operation optimization and the thermal efficiency model is used to evaluate the level efficiency improvement. The high accuracy of the proposed modeling approaches makes the implementation of the operation optimization strategy readily practicable.
doi_str_mv 10.23919/ChiCC.2017.8028907
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8028907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8028907</ieee_id><sourcerecordid>8028907</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1c0e270764521ae77858f4b1d995b03677698b930346e3b5e3aa772f54a1c82a3</originalsourceid><addsrcrecordid>eNotkE1OwzAUhA0SEm3hBN34Ak797PhvWSJakCqxANaVnbwUozSOnGzK6YnUrmbmk2YWQ8gaeCGkA7epfmJVFYKDKSwX1nFzR5bOWlBaOinvyUKABiacMI9kOY6_nGvuQC7I55Y2iAPt0Oc-9icW_IgNTQNmP8XUz26K5_h3DeM0UzxdaJsyfdntN3XyHa0Ta2OeyzSk2GF-Ig-t70Z8vumKfO9ev6o3dvjYv1fbA4tg1MSg5igMN7pUAjwaY5VtywCNcypwqY3RzgYnuSw1yqBQem-MaFXpobbCyxVZX3cjIh6HHM8-X463A-Q_NJxPTw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A deep learning-based operation optimization strategy for BFG/coal co-firing boiler</title><source>IEEE Xplore All Conference Series</source><creator>Jian-Guo Wang ; Jin-Qiu Min ; Li-Lan Liu ; Bang-Hua Yang ; Shi-Wei Ma ; Min-Rui Fei ; Yi-Min Guo ; Yuan Yao ; Yi-Ping Wu</creator><creatorcontrib>Jian-Guo Wang ; Jin-Qiu Min ; Li-Lan Liu ; Bang-Hua Yang ; Shi-Wei Ma ; Min-Rui Fei ; Yi-Min Guo ; Yuan Yao ; Yi-Ping Wu</creatorcontrib><description>How to operate a BFG/coal co-firing boiler in high efficiency is challenging for a gas/solid multi-fuel combustion system. Taking operation data from a real boiler, this study proposes an operation optimization strategy of BFG/coal co-firing boiler based on deep learning. Firstly, the thermal efficiency model is constructed based on deep learning with all the actual sampling data, which outperform the other modeling methods. Then, the high efficiency data being selected as labeled data, a deep learning-based model of air flow is constructed. It needs to be emphasized that, to take full advantage of all available information and improve the model accuracy, all the labeled and unlabeled data are utilized in auto-coder learning of the air flow modeling. Finally, the constructed air flow model is used for the operation optimization and the thermal efficiency model is used to evaluate the level efficiency improvement. The high accuracy of the proposed modeling approaches makes the implementation of the operation optimization strategy readily practicable.</description><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9881563933</identifier><identifier>EISBN: 9789881563934</identifier><identifier>DOI: 10.23919/ChiCC.2017.8028907</identifier><language>eng</language><publisher>Technical Committee on Control Theory, CAA</publisher><subject>Atmospheric modeling ; auto-coder ; BFG/coal co-frring ; Biological neural networks ; Boilers ; Data models ; data-driven ; deep learning ; Machine learning ; Predictive models ; thermal efficiency ; Training</subject><ispartof>2017 36th Chinese Control Conference (CCC), 2017, p.9720-9724</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8028907$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8028907$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian-Guo Wang</creatorcontrib><creatorcontrib>Jin-Qiu Min</creatorcontrib><creatorcontrib>Li-Lan Liu</creatorcontrib><creatorcontrib>Bang-Hua Yang</creatorcontrib><creatorcontrib>Shi-Wei Ma</creatorcontrib><creatorcontrib>Min-Rui Fei</creatorcontrib><creatorcontrib>Yi-Min Guo</creatorcontrib><creatorcontrib>Yuan Yao</creatorcontrib><creatorcontrib>Yi-Ping Wu</creatorcontrib><title>A deep learning-based operation optimization strategy for BFG/coal co-firing boiler</title><title>2017 36th Chinese Control Conference (CCC)</title><addtitle>ChiCC</addtitle><description>How to operate a BFG/coal co-firing boiler in high efficiency is challenging for a gas/solid multi-fuel combustion system. Taking operation data from a real boiler, this study proposes an operation optimization strategy of BFG/coal co-firing boiler based on deep learning. Firstly, the thermal efficiency model is constructed based on deep learning with all the actual sampling data, which outperform the other modeling methods. Then, the high efficiency data being selected as labeled data, a deep learning-based model of air flow is constructed. It needs to be emphasized that, to take full advantage of all available information and improve the model accuracy, all the labeled and unlabeled data are utilized in auto-coder learning of the air flow modeling. Finally, the constructed air flow model is used for the operation optimization and the thermal efficiency model is used to evaluate the level efficiency improvement. The high accuracy of the proposed modeling approaches makes the implementation of the operation optimization strategy readily practicable.</description><subject>Atmospheric modeling</subject><subject>auto-coder</subject><subject>BFG/coal co-frring</subject><subject>Biological neural networks</subject><subject>Boilers</subject><subject>Data models</subject><subject>data-driven</subject><subject>deep learning</subject><subject>Machine learning</subject><subject>Predictive models</subject><subject>thermal efficiency</subject><subject>Training</subject><issn>2161-2927</issn><isbn>9881563933</isbn><isbn>9789881563934</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1OwzAUhA0SEm3hBN34Ak797PhvWSJakCqxANaVnbwUozSOnGzK6YnUrmbmk2YWQ8gaeCGkA7epfmJVFYKDKSwX1nFzR5bOWlBaOinvyUKABiacMI9kOY6_nGvuQC7I55Y2iAPt0Oc-9icW_IgNTQNmP8XUz26K5_h3DeM0UzxdaJsyfdntN3XyHa0Ta2OeyzSk2GF-Ig-t70Z8vumKfO9ev6o3dvjYv1fbA4tg1MSg5igMN7pUAjwaY5VtywCNcypwqY3RzgYnuSw1yqBQem-MaFXpobbCyxVZX3cjIh6HHM8-X463A-Q_NJxPTw</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Jian-Guo Wang</creator><creator>Jin-Qiu Min</creator><creator>Li-Lan Liu</creator><creator>Bang-Hua Yang</creator><creator>Shi-Wei Ma</creator><creator>Min-Rui Fei</creator><creator>Yi-Min Guo</creator><creator>Yuan Yao</creator><creator>Yi-Ping Wu</creator><general>Technical Committee on Control Theory, CAA</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201707</creationdate><title>A deep learning-based operation optimization strategy for BFG/coal co-firing boiler</title><author>Jian-Guo Wang ; Jin-Qiu Min ; Li-Lan Liu ; Bang-Hua Yang ; Shi-Wei Ma ; Min-Rui Fei ; Yi-Min Guo ; Yuan Yao ; Yi-Ping Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1c0e270764521ae77858f4b1d995b03677698b930346e3b5e3aa772f54a1c82a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atmospheric modeling</topic><topic>auto-coder</topic><topic>BFG/coal co-frring</topic><topic>Biological neural networks</topic><topic>Boilers</topic><topic>Data models</topic><topic>data-driven</topic><topic>deep learning</topic><topic>Machine learning</topic><topic>Predictive models</topic><topic>thermal efficiency</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Jian-Guo Wang</creatorcontrib><creatorcontrib>Jin-Qiu Min</creatorcontrib><creatorcontrib>Li-Lan Liu</creatorcontrib><creatorcontrib>Bang-Hua Yang</creatorcontrib><creatorcontrib>Shi-Wei Ma</creatorcontrib><creatorcontrib>Min-Rui Fei</creatorcontrib><creatorcontrib>Yi-Min Guo</creatorcontrib><creatorcontrib>Yuan Yao</creatorcontrib><creatorcontrib>Yi-Ping Wu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian-Guo Wang</au><au>Jin-Qiu Min</au><au>Li-Lan Liu</au><au>Bang-Hua Yang</au><au>Shi-Wei Ma</au><au>Min-Rui Fei</au><au>Yi-Min Guo</au><au>Yuan Yao</au><au>Yi-Ping Wu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A deep learning-based operation optimization strategy for BFG/coal co-firing boiler</atitle><btitle>2017 36th Chinese Control Conference (CCC)</btitle><stitle>ChiCC</stitle><date>2017-07</date><risdate>2017</risdate><spage>9720</spage><epage>9724</epage><pages>9720-9724</pages><eissn>2161-2927</eissn><eisbn>9881563933</eisbn><eisbn>9789881563934</eisbn><abstract>How to operate a BFG/coal co-firing boiler in high efficiency is challenging for a gas/solid multi-fuel combustion system. Taking operation data from a real boiler, this study proposes an operation optimization strategy of BFG/coal co-firing boiler based on deep learning. Firstly, the thermal efficiency model is constructed based on deep learning with all the actual sampling data, which outperform the other modeling methods. Then, the high efficiency data being selected as labeled data, a deep learning-based model of air flow is constructed. It needs to be emphasized that, to take full advantage of all available information and improve the model accuracy, all the labeled and unlabeled data are utilized in auto-coder learning of the air flow modeling. Finally, the constructed air flow model is used for the operation optimization and the thermal efficiency model is used to evaluate the level efficiency improvement. The high accuracy of the proposed modeling approaches makes the implementation of the operation optimization strategy readily practicable.</abstract><pub>Technical Committee on Control Theory, CAA</pub><doi>10.23919/ChiCC.2017.8028907</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-2927
ispartof 2017 36th Chinese Control Conference (CCC), 2017, p.9720-9724
issn 2161-2927
language eng
recordid cdi_ieee_primary_8028907
source IEEE Xplore All Conference Series
subjects Atmospheric modeling
auto-coder
BFG/coal co-frring
Biological neural networks
Boilers
Data models
data-driven
deep learning
Machine learning
Predictive models
thermal efficiency
Training
title A deep learning-based operation optimization strategy for BFG/coal co-firing boiler
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20deep%20learning-based%20operation%20optimization%20strategy%20for%20BFG/coal%20co-firing%20boiler&rft.btitle=2017%2036th%20Chinese%20Control%20Conference%20(CCC)&rft.au=Jian-Guo%20Wang&rft.date=2017-07&rft.spage=9720&rft.epage=9724&rft.pages=9720-9724&rft.eissn=2161-2927&rft_id=info:doi/10.23919/ChiCC.2017.8028907&rft.eisbn=9881563933&rft.eisbn_list=9789881563934&rft_dat=%3Cieee_CHZPO%3E8028907%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1c0e270764521ae77858f4b1d995b03677698b930346e3b5e3aa772f54a1c82a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8028907&rfr_iscdi=true