Loading…
A deep learning-based operation optimization strategy for BFG/coal co-firing boiler
How to operate a BFG/coal co-firing boiler in high efficiency is challenging for a gas/solid multi-fuel combustion system. Taking operation data from a real boiler, this study proposes an operation optimization strategy of BFG/coal co-firing boiler based on deep learning. Firstly, the thermal effici...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9724 |
container_issue | |
container_start_page | 9720 |
container_title | |
container_volume | |
creator | Jian-Guo Wang Jin-Qiu Min Li-Lan Liu Bang-Hua Yang Shi-Wei Ma Min-Rui Fei Yi-Min Guo Yuan Yao Yi-Ping Wu |
description | How to operate a BFG/coal co-firing boiler in high efficiency is challenging for a gas/solid multi-fuel combustion system. Taking operation data from a real boiler, this study proposes an operation optimization strategy of BFG/coal co-firing boiler based on deep learning. Firstly, the thermal efficiency model is constructed based on deep learning with all the actual sampling data, which outperform the other modeling methods. Then, the high efficiency data being selected as labeled data, a deep learning-based model of air flow is constructed. It needs to be emphasized that, to take full advantage of all available information and improve the model accuracy, all the labeled and unlabeled data are utilized in auto-coder learning of the air flow modeling. Finally, the constructed air flow model is used for the operation optimization and the thermal efficiency model is used to evaluate the level efficiency improvement. The high accuracy of the proposed modeling approaches makes the implementation of the operation optimization strategy readily practicable. |
doi_str_mv | 10.23919/ChiCC.2017.8028907 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8028907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8028907</ieee_id><sourcerecordid>8028907</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1c0e270764521ae77858f4b1d995b03677698b930346e3b5e3aa772f54a1c82a3</originalsourceid><addsrcrecordid>eNotkE1OwzAUhA0SEm3hBN34Ak797PhvWSJakCqxANaVnbwUozSOnGzK6YnUrmbmk2YWQ8gaeCGkA7epfmJVFYKDKSwX1nFzR5bOWlBaOinvyUKABiacMI9kOY6_nGvuQC7I55Y2iAPt0Oc-9icW_IgNTQNmP8XUz26K5_h3DeM0UzxdaJsyfdntN3XyHa0Ta2OeyzSk2GF-Ig-t70Z8vumKfO9ev6o3dvjYv1fbA4tg1MSg5igMN7pUAjwaY5VtywCNcypwqY3RzgYnuSw1yqBQem-MaFXpobbCyxVZX3cjIh6HHM8-X463A-Q_NJxPTw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A deep learning-based operation optimization strategy for BFG/coal co-firing boiler</title><source>IEEE Xplore All Conference Series</source><creator>Jian-Guo Wang ; Jin-Qiu Min ; Li-Lan Liu ; Bang-Hua Yang ; Shi-Wei Ma ; Min-Rui Fei ; Yi-Min Guo ; Yuan Yao ; Yi-Ping Wu</creator><creatorcontrib>Jian-Guo Wang ; Jin-Qiu Min ; Li-Lan Liu ; Bang-Hua Yang ; Shi-Wei Ma ; Min-Rui Fei ; Yi-Min Guo ; Yuan Yao ; Yi-Ping Wu</creatorcontrib><description>How to operate a BFG/coal co-firing boiler in high efficiency is challenging for a gas/solid multi-fuel combustion system. Taking operation data from a real boiler, this study proposes an operation optimization strategy of BFG/coal co-firing boiler based on deep learning. Firstly, the thermal efficiency model is constructed based on deep learning with all the actual sampling data, which outperform the other modeling methods. Then, the high efficiency data being selected as labeled data, a deep learning-based model of air flow is constructed. It needs to be emphasized that, to take full advantage of all available information and improve the model accuracy, all the labeled and unlabeled data are utilized in auto-coder learning of the air flow modeling. Finally, the constructed air flow model is used for the operation optimization and the thermal efficiency model is used to evaluate the level efficiency improvement. The high accuracy of the proposed modeling approaches makes the implementation of the operation optimization strategy readily practicable.</description><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9881563933</identifier><identifier>EISBN: 9789881563934</identifier><identifier>DOI: 10.23919/ChiCC.2017.8028907</identifier><language>eng</language><publisher>Technical Committee on Control Theory, CAA</publisher><subject>Atmospheric modeling ; auto-coder ; BFG/coal co-frring ; Biological neural networks ; Boilers ; Data models ; data-driven ; deep learning ; Machine learning ; Predictive models ; thermal efficiency ; Training</subject><ispartof>2017 36th Chinese Control Conference (CCC), 2017, p.9720-9724</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8028907$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8028907$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian-Guo Wang</creatorcontrib><creatorcontrib>Jin-Qiu Min</creatorcontrib><creatorcontrib>Li-Lan Liu</creatorcontrib><creatorcontrib>Bang-Hua Yang</creatorcontrib><creatorcontrib>Shi-Wei Ma</creatorcontrib><creatorcontrib>Min-Rui Fei</creatorcontrib><creatorcontrib>Yi-Min Guo</creatorcontrib><creatorcontrib>Yuan Yao</creatorcontrib><creatorcontrib>Yi-Ping Wu</creatorcontrib><title>A deep learning-based operation optimization strategy for BFG/coal co-firing boiler</title><title>2017 36th Chinese Control Conference (CCC)</title><addtitle>ChiCC</addtitle><description>How to operate a BFG/coal co-firing boiler in high efficiency is challenging for a gas/solid multi-fuel combustion system. Taking operation data from a real boiler, this study proposes an operation optimization strategy of BFG/coal co-firing boiler based on deep learning. Firstly, the thermal efficiency model is constructed based on deep learning with all the actual sampling data, which outperform the other modeling methods. Then, the high efficiency data being selected as labeled data, a deep learning-based model of air flow is constructed. It needs to be emphasized that, to take full advantage of all available information and improve the model accuracy, all the labeled and unlabeled data are utilized in auto-coder learning of the air flow modeling. Finally, the constructed air flow model is used for the operation optimization and the thermal efficiency model is used to evaluate the level efficiency improvement. The high accuracy of the proposed modeling approaches makes the implementation of the operation optimization strategy readily practicable.</description><subject>Atmospheric modeling</subject><subject>auto-coder</subject><subject>BFG/coal co-frring</subject><subject>Biological neural networks</subject><subject>Boilers</subject><subject>Data models</subject><subject>data-driven</subject><subject>deep learning</subject><subject>Machine learning</subject><subject>Predictive models</subject><subject>thermal efficiency</subject><subject>Training</subject><issn>2161-2927</issn><isbn>9881563933</isbn><isbn>9789881563934</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1OwzAUhA0SEm3hBN34Ak797PhvWSJakCqxANaVnbwUozSOnGzK6YnUrmbmk2YWQ8gaeCGkA7epfmJVFYKDKSwX1nFzR5bOWlBaOinvyUKABiacMI9kOY6_nGvuQC7I55Y2iAPt0Oc-9icW_IgNTQNmP8XUz26K5_h3DeM0UzxdaJsyfdntN3XyHa0Ta2OeyzSk2GF-Ig-t70Z8vumKfO9ev6o3dvjYv1fbA4tg1MSg5igMN7pUAjwaY5VtywCNcypwqY3RzgYnuSw1yqBQem-MaFXpobbCyxVZX3cjIh6HHM8-X463A-Q_NJxPTw</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Jian-Guo Wang</creator><creator>Jin-Qiu Min</creator><creator>Li-Lan Liu</creator><creator>Bang-Hua Yang</creator><creator>Shi-Wei Ma</creator><creator>Min-Rui Fei</creator><creator>Yi-Min Guo</creator><creator>Yuan Yao</creator><creator>Yi-Ping Wu</creator><general>Technical Committee on Control Theory, CAA</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201707</creationdate><title>A deep learning-based operation optimization strategy for BFG/coal co-firing boiler</title><author>Jian-Guo Wang ; Jin-Qiu Min ; Li-Lan Liu ; Bang-Hua Yang ; Shi-Wei Ma ; Min-Rui Fei ; Yi-Min Guo ; Yuan Yao ; Yi-Ping Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1c0e270764521ae77858f4b1d995b03677698b930346e3b5e3aa772f54a1c82a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atmospheric modeling</topic><topic>auto-coder</topic><topic>BFG/coal co-frring</topic><topic>Biological neural networks</topic><topic>Boilers</topic><topic>Data models</topic><topic>data-driven</topic><topic>deep learning</topic><topic>Machine learning</topic><topic>Predictive models</topic><topic>thermal efficiency</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Jian-Guo Wang</creatorcontrib><creatorcontrib>Jin-Qiu Min</creatorcontrib><creatorcontrib>Li-Lan Liu</creatorcontrib><creatorcontrib>Bang-Hua Yang</creatorcontrib><creatorcontrib>Shi-Wei Ma</creatorcontrib><creatorcontrib>Min-Rui Fei</creatorcontrib><creatorcontrib>Yi-Min Guo</creatorcontrib><creatorcontrib>Yuan Yao</creatorcontrib><creatorcontrib>Yi-Ping Wu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian-Guo Wang</au><au>Jin-Qiu Min</au><au>Li-Lan Liu</au><au>Bang-Hua Yang</au><au>Shi-Wei Ma</au><au>Min-Rui Fei</au><au>Yi-Min Guo</au><au>Yuan Yao</au><au>Yi-Ping Wu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A deep learning-based operation optimization strategy for BFG/coal co-firing boiler</atitle><btitle>2017 36th Chinese Control Conference (CCC)</btitle><stitle>ChiCC</stitle><date>2017-07</date><risdate>2017</risdate><spage>9720</spage><epage>9724</epage><pages>9720-9724</pages><eissn>2161-2927</eissn><eisbn>9881563933</eisbn><eisbn>9789881563934</eisbn><abstract>How to operate a BFG/coal co-firing boiler in high efficiency is challenging for a gas/solid multi-fuel combustion system. Taking operation data from a real boiler, this study proposes an operation optimization strategy of BFG/coal co-firing boiler based on deep learning. Firstly, the thermal efficiency model is constructed based on deep learning with all the actual sampling data, which outperform the other modeling methods. Then, the high efficiency data being selected as labeled data, a deep learning-based model of air flow is constructed. It needs to be emphasized that, to take full advantage of all available information and improve the model accuracy, all the labeled and unlabeled data are utilized in auto-coder learning of the air flow modeling. Finally, the constructed air flow model is used for the operation optimization and the thermal efficiency model is used to evaluate the level efficiency improvement. The high accuracy of the proposed modeling approaches makes the implementation of the operation optimization strategy readily practicable.</abstract><pub>Technical Committee on Control Theory, CAA</pub><doi>10.23919/ChiCC.2017.8028907</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-2927 |
ispartof | 2017 36th Chinese Control Conference (CCC), 2017, p.9720-9724 |
issn | 2161-2927 |
language | eng |
recordid | cdi_ieee_primary_8028907 |
source | IEEE Xplore All Conference Series |
subjects | Atmospheric modeling auto-coder BFG/coal co-frring Biological neural networks Boilers Data models data-driven deep learning Machine learning Predictive models thermal efficiency Training |
title | A deep learning-based operation optimization strategy for BFG/coal co-firing boiler |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20deep%20learning-based%20operation%20optimization%20strategy%20for%20BFG/coal%20co-firing%20boiler&rft.btitle=2017%2036th%20Chinese%20Control%20Conference%20(CCC)&rft.au=Jian-Guo%20Wang&rft.date=2017-07&rft.spage=9720&rft.epage=9724&rft.pages=9720-9724&rft.eissn=2161-2927&rft_id=info:doi/10.23919/ChiCC.2017.8028907&rft.eisbn=9881563933&rft.eisbn_list=9789881563934&rft_dat=%3Cieee_CHZPO%3E8028907%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1c0e270764521ae77858f4b1d995b03677698b930346e3b5e3aa772f54a1c82a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8028907&rfr_iscdi=true |