Loading…
Lithium Niobate MEMS Chirp Compressors for Near Zero Power Wake-Up Radios
This paper presents the first demonstration of chirp compressors based on laterally vibrating modes in suspended lithium niobate thin films. Both shear-horizontal and length-extensional modes have been explored and demonstrated with the electromechanical coupling coefficients of 30% and 39%, respect...
Saved in:
Published in: | Journal of microelectromechanical systems 2017-12, Vol.26 (6), p.1204-1215 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the first demonstration of chirp compressors based on laterally vibrating modes in suspended lithium niobate thin films. Both shear-horizontal and length-extensional modes have been explored and demonstrated with the electromechanical coupling coefficients of 30% and 39%, respectively, in a double-dispersive delay line structure. The high electromechanical coupling, along with the low propagation loss in the suspended thin film, produces a low insertion loss of 10 dB over a large fractional bandwidth of 50%. The best fabricated device demonstrates a delay-bandwidth product of 100, and provides a voltage gain of 5 to the corresponding chirp signals. Moreover, significant signal-to-noise ratio enhancements (>100), collectively enabled by the processing gain and filtering characteristics of the chirp compressors, have been demonstrated. The measured devices, in this paper, greatly outperform state-of-the-art chirp compressors based on surface acoustic waves in insertion loss for a comparable TB. As a result, signal-to-noise ratio enhancement and voltage gain have been simultaneously demonstrated for the first time in a passive device and the analog domain. The high performance can be harnessed to greatly enhance the sensitivity of near zero power wake-up radio receivers and enable low-power wireless connectivity for Internet of Things applications. |
---|---|
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2017.2750176 |