Loading…
A Resistor-Based Temperature Sensor With a 0.13 pJ \cdot K2 Resolution FoM
This paper describes a high-resolution energy-efficient CMOS temperature sensor, intended for the temperature compensation of MEMS/quartz frequency references. The sensor is based on silicided poly-silicon thermistors, which are embedded in a Wien-bridge RC filter. When driven at a fixed frequency,...
Saved in:
Published in: | IEEE journal of solid-state circuits 2018-01, Vol.53 (1), p.164-173 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1811-6c9a818f6b7f92d9e33dd16ac2ef935dd0bd0af9955f2240994b52c5ca0e13373 |
---|---|
cites | cdi_FETCH-LOGICAL-c1811-6c9a818f6b7f92d9e33dd16ac2ef935dd0bd0af9955f2240994b52c5ca0e13373 |
container_end_page | 173 |
container_issue | 1 |
container_start_page | 164 |
container_title | IEEE journal of solid-state circuits |
container_volume | 53 |
creator | Sining Pan Yanquan Luo Shalmany, Saleh Heidary Makinwa, Kofi A. A. |
description | This paper describes a high-resolution energy-efficient CMOS temperature sensor, intended for the temperature compensation of MEMS/quartz frequency references. The sensor is based on silicided poly-silicon thermistors, which are embedded in a Wien-bridge RC filter. When driven at a fixed frequency, the filter exhibits a temperature-dependent phase shift, which is digitized by an energy-efficient continuous-time phase-domain delta-sigma modulator. Implemented in a 0.18-μm CMOS technology, the sensor draws 87 μA from a 1.8 V supply and achieves a resolution of 410 μK rms in a 5-ms conversion time. This translates into a state-of-the-art resolution figure-of-merit of 0.13 pJ · K 2 . When packaged in ceramic, the sensor achieves an inaccuracy of 0.2 °C (3σ) from -40 °C to 85 °C after a singlepoint calibration and a correction for systematic nonlinearity. This can be reduced to ±0.03 °C (3σ) after a first-order fit. In addition, the sensor exhibits low 1/f noise and packaging shift. |
doi_str_mv | 10.1109/JSSC.2017.2746671 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8051272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8051272</ieee_id><sourcerecordid>1981069539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1811-6c9a818f6b7f92d9e33dd16ac2ef935dd0bd0af9955f2240994b52c5ca0e13373</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZmzRt8jiHm86J4Cb6IISsucWObalJ--C_t2XDp8uF850DHyHXwEYATN_Nl8vJiDPIRzxPsyyHEzIAKVUCufg8JQPGQCWaM3ZOLmLcdG-aKhiQ-Zi-Yaxi40NybyM6usJdjcE2bUC6xH30gX5UzTe1tJsStJ7Tr8L5hj7znvTbtqn8nk79yyU5K-024tXxDsn79GE1eUwWr7OnyXiRFKAAkqzQVoEqs3Veau40CuEcZLbgWGohnWNrx2yptZQl5ynTOl1LXsjCMgQhcjEkt4feOvifFmNjNr4N-27SgFbAMi2F7lJwSBXBxxiwNHWodjb8GmCmV2Z6ZaZXZo7KOubmwFSI-J9XTALPufgDBDNk6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1981069539</pqid></control><display><type>article</type><title>A Resistor-Based Temperature Sensor With a 0.13 pJ \cdot K2 Resolution FoM</title><source>IEEE Xplore (Online service)</source><creator>Sining Pan ; Yanquan Luo ; Shalmany, Saleh Heidary ; Makinwa, Kofi A. A.</creator><creatorcontrib>Sining Pan ; Yanquan Luo ; Shalmany, Saleh Heidary ; Makinwa, Kofi A. A.</creatorcontrib><description>This paper describes a high-resolution energy-efficient CMOS temperature sensor, intended for the temperature compensation of MEMS/quartz frequency references. The sensor is based on silicided poly-silicon thermistors, which are embedded in a Wien-bridge RC filter. When driven at a fixed frequency, the filter exhibits a temperature-dependent phase shift, which is digitized by an energy-efficient continuous-time phase-domain delta-sigma modulator. Implemented in a 0.18-μm CMOS technology, the sensor draws 87 μA from a 1.8 V supply and achieves a resolution of 410 μK rms in a 5-ms conversion time. This translates into a state-of-the-art resolution figure-of-merit of 0.13 pJ · K 2 . When packaged in ceramic, the sensor achieves an inaccuracy of 0.2 °C (3σ) from -40 °C to 85 °C after a singlepoint calibration and a correction for systematic nonlinearity. This can be reduced to ±0.03 °C (3σ) after a first-order fit. In addition, the sensor exhibits low 1/f noise and packaging shift.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2017.2746671</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Calibration ; CMOS ; CMOS process ; CMOS temperature sensor ; continuous-time phase-domain delta-sigma modulator (PDΔΣM) ; Digitization ; energy efficiency ; Energy resolution ; Intermetallic compounds ; resistor-based sensor ; Resistors ; Sensors ; Signal resolution ; Silicides ; Temperature compensation ; Temperature dependence ; Temperature sensors ; Thermistors</subject><ispartof>IEEE journal of solid-state circuits, 2018-01, Vol.53 (1), p.164-173</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1811-6c9a818f6b7f92d9e33dd16ac2ef935dd0bd0af9955f2240994b52c5ca0e13373</citedby><cites>FETCH-LOGICAL-c1811-6c9a818f6b7f92d9e33dd16ac2ef935dd0bd0af9955f2240994b52c5ca0e13373</cites><orcidid>0000-0003-3846-134X ; 0000-0002-5409-3367 ; 0000-0002-2992-5467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8051272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Sining Pan</creatorcontrib><creatorcontrib>Yanquan Luo</creatorcontrib><creatorcontrib>Shalmany, Saleh Heidary</creatorcontrib><creatorcontrib>Makinwa, Kofi A. A.</creatorcontrib><title>A Resistor-Based Temperature Sensor With a 0.13 pJ \cdot K2 Resolution FoM</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This paper describes a high-resolution energy-efficient CMOS temperature sensor, intended for the temperature compensation of MEMS/quartz frequency references. The sensor is based on silicided poly-silicon thermistors, which are embedded in a Wien-bridge RC filter. When driven at a fixed frequency, the filter exhibits a temperature-dependent phase shift, which is digitized by an energy-efficient continuous-time phase-domain delta-sigma modulator. Implemented in a 0.18-μm CMOS technology, the sensor draws 87 μA from a 1.8 V supply and achieves a resolution of 410 μK rms in a 5-ms conversion time. This translates into a state-of-the-art resolution figure-of-merit of 0.13 pJ · K 2 . When packaged in ceramic, the sensor achieves an inaccuracy of 0.2 °C (3σ) from -40 °C to 85 °C after a singlepoint calibration and a correction for systematic nonlinearity. This can be reduced to ±0.03 °C (3σ) after a first-order fit. In addition, the sensor exhibits low 1/f noise and packaging shift.</description><subject>Calibration</subject><subject>CMOS</subject><subject>CMOS process</subject><subject>CMOS temperature sensor</subject><subject>continuous-time phase-domain delta-sigma modulator (PDΔΣM)</subject><subject>Digitization</subject><subject>energy efficiency</subject><subject>Energy resolution</subject><subject>Intermetallic compounds</subject><subject>resistor-based sensor</subject><subject>Resistors</subject><subject>Sensors</subject><subject>Signal resolution</subject><subject>Silicides</subject><subject>Temperature compensation</subject><subject>Temperature dependence</subject><subject>Temperature sensors</subject><subject>Thermistors</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZmzRt8jiHm86J4Cb6IISsucWObalJ--C_t2XDp8uF850DHyHXwEYATN_Nl8vJiDPIRzxPsyyHEzIAKVUCufg8JQPGQCWaM3ZOLmLcdG-aKhiQ-Zi-Yaxi40NybyM6usJdjcE2bUC6xH30gX5UzTe1tJsStJ7Tr8L5hj7znvTbtqn8nk79yyU5K-024tXxDsn79GE1eUwWr7OnyXiRFKAAkqzQVoEqs3Veau40CuEcZLbgWGohnWNrx2yptZQl5ynTOl1LXsjCMgQhcjEkt4feOvifFmNjNr4N-27SgFbAMi2F7lJwSBXBxxiwNHWodjb8GmCmV2Z6ZaZXZo7KOubmwFSI-J9XTALPufgDBDNk6g</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Sining Pan</creator><creator>Yanquan Luo</creator><creator>Shalmany, Saleh Heidary</creator><creator>Makinwa, Kofi A. A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3846-134X</orcidid><orcidid>https://orcid.org/0000-0002-5409-3367</orcidid><orcidid>https://orcid.org/0000-0002-2992-5467</orcidid></search><sort><creationdate>201801</creationdate><title>A Resistor-Based Temperature Sensor With a 0.13 pJ \cdot K2 Resolution FoM</title><author>Sining Pan ; Yanquan Luo ; Shalmany, Saleh Heidary ; Makinwa, Kofi A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1811-6c9a818f6b7f92d9e33dd16ac2ef935dd0bd0af9955f2240994b52c5ca0e13373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calibration</topic><topic>CMOS</topic><topic>CMOS process</topic><topic>CMOS temperature sensor</topic><topic>continuous-time phase-domain delta-sigma modulator (PDΔΣM)</topic><topic>Digitization</topic><topic>energy efficiency</topic><topic>Energy resolution</topic><topic>Intermetallic compounds</topic><topic>resistor-based sensor</topic><topic>Resistors</topic><topic>Sensors</topic><topic>Signal resolution</topic><topic>Silicides</topic><topic>Temperature compensation</topic><topic>Temperature dependence</topic><topic>Temperature sensors</topic><topic>Thermistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sining Pan</creatorcontrib><creatorcontrib>Yanquan Luo</creatorcontrib><creatorcontrib>Shalmany, Saleh Heidary</creatorcontrib><creatorcontrib>Makinwa, Kofi A. A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sining Pan</au><au>Yanquan Luo</au><au>Shalmany, Saleh Heidary</au><au>Makinwa, Kofi A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Resistor-Based Temperature Sensor With a 0.13 pJ \cdot K2 Resolution FoM</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2018-01</date><risdate>2018</risdate><volume>53</volume><issue>1</issue><spage>164</spage><epage>173</epage><pages>164-173</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This paper describes a high-resolution energy-efficient CMOS temperature sensor, intended for the temperature compensation of MEMS/quartz frequency references. The sensor is based on silicided poly-silicon thermistors, which are embedded in a Wien-bridge RC filter. When driven at a fixed frequency, the filter exhibits a temperature-dependent phase shift, which is digitized by an energy-efficient continuous-time phase-domain delta-sigma modulator. Implemented in a 0.18-μm CMOS technology, the sensor draws 87 μA from a 1.8 V supply and achieves a resolution of 410 μK rms in a 5-ms conversion time. This translates into a state-of-the-art resolution figure-of-merit of 0.13 pJ · K 2 . When packaged in ceramic, the sensor achieves an inaccuracy of 0.2 °C (3σ) from -40 °C to 85 °C after a singlepoint calibration and a correction for systematic nonlinearity. This can be reduced to ±0.03 °C (3σ) after a first-order fit. In addition, the sensor exhibits low 1/f noise and packaging shift.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2017.2746671</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3846-134X</orcidid><orcidid>https://orcid.org/0000-0002-5409-3367</orcidid><orcidid>https://orcid.org/0000-0002-2992-5467</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2018-01, Vol.53 (1), p.164-173 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_ieee_primary_8051272 |
source | IEEE Xplore (Online service) |
subjects | Calibration CMOS CMOS process CMOS temperature sensor continuous-time phase-domain delta-sigma modulator (PDΔΣM) Digitization energy efficiency Energy resolution Intermetallic compounds resistor-based sensor Resistors Sensors Signal resolution Silicides Temperature compensation Temperature dependence Temperature sensors Thermistors |
title | A Resistor-Based Temperature Sensor With a 0.13 pJ \cdot K2 Resolution FoM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Resistor-Based%20Temperature%20Sensor%20With%20a%200.13%20pJ%20%5Ccdot%20K2%20Resolution%20FoM&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Sining%20Pan&rft.date=2018-01&rft.volume=53&rft.issue=1&rft.spage=164&rft.epage=173&rft.pages=164-173&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2017.2746671&rft_dat=%3Cproquest_ieee_%3E1981069539%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1811-6c9a818f6b7f92d9e33dd16ac2ef935dd0bd0af9955f2240994b52c5ca0e13373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1981069539&rft_id=info:pmid/&rft_ieee_id=8051272&rfr_iscdi=true |