Loading…

Safe Charging for Wireless Power Transfer

As battery-powered mobile devices become more popular and energy hungry, wireless power transfer technology, which allows the power to be transferred from a charger to ambient devices wirelessly, receives intensive interests. Existing schemes mainly focus on the power transfer efficiency but overloo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking 2017-12, Vol.25 (6), p.3531-3544
Main Authors: Haipeng Dai, Yunhuai Liu, Guihai Chen, Xiaobing Wu, Tian He, Liu, Alex X., Huizhen Ma
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As battery-powered mobile devices become more popular and energy hungry, wireless power transfer technology, which allows the power to be transferred from a charger to ambient devices wirelessly, receives intensive interests. Existing schemes mainly focus on the power transfer efficiency but overlook the health impairments caused by RF exposure. In this paper, we study the safe charging problem (SCP) of scheduling power chargers so that more energy can be received while no location in the field has electromagnetic radiation (EMR) exceeding a given threshold Rt. We show that SCP is NP-hard and propose a solution, which provably outperforms the optimal solution to SCP with a relaxed EMR threshold (1-ε)Rt. Testbed results based on 8 Powercast TX91501 chargers validate our results. Extensive simulation results show that the gap between our solution and the optimal one is only 6.7% when ε = 0.1, while a naive greedy algorithm is 34.6% below our solution.
ISSN:1063-6692
1558-2566
DOI:10.1109/TNET.2017.2750323